研究论文

声表面行波器件及其在微纳领域的应用

  • 董惠娟 ,
  • 王敬轩 ,
  • 李天龙
展开
  • 哈尔滨工业大学机器人技术与系统国家重点实验室, 哈尔滨 150001
董惠娟,教授,研究方向为驻波声悬浮,电子信箱:dhj@hit.edu.cn

收稿日期: 2018-12-06

  修回日期: 2019-02-17

  网络出版日期: 2019-04-09

基金资助

国家自然科学基金项目(51675140)

Device of travelling surface acoustic wave and its application in the field of micro-nano scales

  • DONG Huijuan ,
  • WANG Jingxuan ,
  • LI Tianlong
Expand
  • State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Received date: 2018-12-06

  Revised date: 2019-02-17

  Online published: 2019-04-09

摘要

声表面行波因其非接触性及生物相容性,在生物医学、诊断学领域得到了广泛关注。概述了声表面行波(TSAW)发生器件的基本结构,叉指换能器(IDT)的结构、参数、种类及引起声表面行波的内在机理,讨论了对微流体状态及微流体中粒子的声控制机理;综合当前该技术国内外研究现状,分析了在微纳领域中声表面行波相对于其他物理场的优势;针对声表面行波在微纳领域应用的技术难点及研究过程中存在的问题,提出了该技术的研究方向,并展望了其未来发展趋势。

本文引用格式

董惠娟 , 王敬轩 , 李天龙 . 声表面行波器件及其在微纳领域的应用[J]. 科技导报, 2019 , 37(6) : 114 -128 . DOI: 10.3981/j.issn.1000-7857.2019.06.015

Abstract

In recent years, as the scientific studies in the field of biology and medicine come down to micron or even nanometer scales, many manipulation methods of micro-nano fluids and particles have emerged, such as the optical drive, the magnetic drive and the chemical mode drive. The sound-driven method has been widely used in the micro-nano field due to its features of non-contact and biocompatibility, and has broad application prospects in the fields of biomedicine and diagnostics. This paper outlines the basic structure of the traveling acoustic surface waves (TSAW) generating device, the structure, the parameters, the types of the interdigital transducer (IDT) and the internal mechanism that causes the traveling surface acoustic waves. The acoustic control mechanism of the microfluidic state and the particles in the microfluids is discussed. Based on the current research status of the technology at home and abroad, the advantages of the traveling acoustic surface waves, as compared to other physical fields in the micro-nano field are analyzed. Finally, in view of the technical difficulties of the traveling acoustic surface waves applied in the micro-nano field and the problems existing in the research process, some research directions of the technology are proposed, and a reasonable prospect for the future development trend is suggested.

参考文献

[1] 杨旭豪. 基于声表面波技术可控合成金纳米粒子的实验研究[D]. 长春:吉林大学, 2016. Yang Xuhao. Experimental study on the controllable synthesis of gold nanoparticles based on sound surface wave technology[D]. Changchun:Jilin University, 2016.
[2] Ruppel C C W, Reindl L, Weigel R. SAW devices and their wireless communications applications[J]. Microwave Magazine IEEE, 2002, 3(2):65-71.
[3] Polh A. A review of wireless SAW sensors[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2000, 47(2):317-332.
[4] Gronewold T M. Surface acoustic wave sensors in the bioanalytical field:recent trends and challenges[J]. Analytica Chimica Acta, 2007, 603(2):119-128.
[5] Länge K, Blaess G, Voigt A, et al. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip[J]. Biosensors & Bioelectronics, 2007, 22(2):227-232.
[6] Renaudin A, Chabot V, Grondin E, et al. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate[J]. Lab on a Chip, 2010, 10(1):111-115.
[7] 文常保, 党双欢, 朱博, 等. 基于WIFI的无线声表面波传感器信号采集系统[J]. 传感技术学报, 2015, 28(10):1552-1557. Wen Changbao, Dang Shuanghuan, Zhu Bo, et al. Wireless SAW sensor signal acquisition system based on the WIFI[J]. Chinese Journal of Sensors and Actuators, 2015, 28(10):1552-1557.
[8] 党双欢. 基于WIFI的无线声表面波振荡器数据采集系统[D]. 西安:长安大学, 2016. Dang Shuanghuan. Data acquisition system of wireless acoustic surface wave oscillator based on WIFI[D]. Xi'an:Chang'an University, 2016.
[9] Lin S C, Mao X, Huang T J. Surface acoustic wave (SAW) acoustophoresis:Now and beyond[J]. Lab on a Chip, 2012, 12(16):2766-2770.
[10] Miller D, Smith N, Bailey M, et al. Overview of therapeutic ultrasound applications and safety considerations[J]. Journal of Ultrasound in Medicine, 2012, 31(4):623-634.
[11] Wiklund M. Acoustofluidics 12:Biocompatibility and cell viability in microfluidic acoustic resonators[J]. Lab on a Chip, 2012, 12(11):2018-2028.
[12] Ding X, Lin S C, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. PNAS, 2012, 109(28):11105-11109.
[13] Li H, Friend J, Yeo L, et al. Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells[J]. Biomicrofluidics, 2009, 3(3):920.
[14] Friend J, Yeo L Y. Microscale acoustofluidics:Microfluidics driven via acoustics and ultrasonics[J]. Reviews of Modern Physics, 2011, 83(2):647-704.
[15] Squires T M, Quake S R. Microfluidics:Fluid physics on the nanoliter scale[J]. Review of Modern Physics, 2005, 77(3):977-1026.
[16] 田民波, 刘德令. 薄膜科学与技术手册[M]. 北京:机械工业出版社, 1991. Tian Minbo, Liu Deling. Thin film science and technology manual[M]. Beijing:China Machine Press, 1991.
[17] 武少南. 声表面波压力传感器的研究[D]. 上海:东华大学, 2014. Wu Shaonan. Research on pressure sensor of surface acoustic waves[D]. Shanghai:Donghua University, 2014.
[18] 田四方. 金刚石基LiNbO3压电薄膜的制备与声表面波性能研究[D]. 郑州:郑州大学, 2011. Tian Sifang. Preparation of diamond-based LiNbO3 piezoelectric thin films and study on surface acoustic waves properties[D]. Zhengzhou:Zhengzhou University, 2011.
[19] 邵春玉. PZT压电薄膜的改性研究[D]. 大连:大连理工大学测试计量技术及仪器系, 2006. Shao Chunyu. Study on the modification of PZT piezoelectric film[D]. Dalian:Dalian University of Technology, 2006.
[20] 刘庆辉. 基于MEMS的声表面波器件设计与制作的关键技术研究[D]. 长沙:国防科学技术大学, 2004. Liu Qinghui. Research on the key technology of MEMSbased surface acoustic waves device design and fabrication[D]. Changsha:National University of Defense Technology, 2004.
[21] 平均芬. 声光可调谐滤波器的理论分析与实验研究[D]. 杭州:浙江工业大学, 2009. Ping Junfen. Theoretical analysis and experimental study of acousto-optic tunable filter[D]. Hangzhou:Zhejiang University of Technology, 2009.
[22] 张瑞. 声表面波射频标签的分析设计[D]. 天津:天津理工大学, 2013. Zhang Rui. Analysis and design of acoustic surface wave radio frequency tag[D]. Tianjin:Tianjin University of Technology, 2013.
[23] Hartmann C S, Secrest B G. End effects in interdigital surface wave transducers[C]//1972 Ultrasonics Symposium. Piscataway New Jereey:IEEE, 1972:413-416.
[24] 王景山, 刘天飞, 孙玮, 等. 声表面波器件模拟与仿真[M]. 北京:国防工业出版社, 2002:52. Wang Jingshan, Liu Tianfei, Sun Wei, et al. Simulation of surface acoustic wave devices[M]. Beijing:National Defence Industry Press, 2002:52.
[25] Lakin K M, Mih D W T, Tarr R M. A new interdigital electrode transducer geometry[J]. IEEE Transactions on Microwave Theory & Techniques, 1974, 22(8):763-768.
[26] 王莹莹. 声表面波器件设计及测试装置的研究[D]. 西安:长安大学, 2015. Wang Yingying. Design and test of surface acoustic wave device[D]. Xi'an:Chang'an University, 2015.
[27] Marshall F G, Newton C O, Paige E G S. Surface acoustic wave multistrip components and their applications[J]. IEEE Transactions on Microwave Theory & Techniques, 1973, 21(4):216-225.
[28] Zhou W, Niu L, Cai F, et al. Spatial selective manipulation of microbubbles by tunable surface acoustic waves[J]. Biomicrofluidics, 2016, 10(3):77-85.
[29] Fakhfouri A, Devendran C, Collins D J, et al. Virtual membrane for filtration of particles using surface acoustic waves (SAW)[J]. Lab on a Chip, 2016, 16(18):3515-3523.
[30] Barnkob R, Augustsson P, Laurell T, et al. Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012, 86:056307.
[31] Destgeer G, Sung H J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves[J]. Lab on a Chip, 2015, 15(13):2722-2738.
[32] Yeo L Y, Friend J R. Ultrafast microfluidics using surface acoustic waves[J]. Biomicrofluidics, 2009, 3(1):381-393.
[33] Frommelt T, Kostur M, Wenzel-SchäFer M, et al. Microfluidic mixing via acoustically driven chaotic advection[J]. Physical Review Letters, 2008, 100(3):034502.
[34] Tseng W K J, Lin L, Sung W C, et al. Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3[J]. Journal of Micromechanics & Microengineering, 2006, 16(3):539.
[35] Luong T D, Phan V N, Nguyen N T. High-throughput micromixers based on acoustic streaming induced by surface acoustic wave[J]. Microfluidics & Nanofluidics, 2011, 10(3):619-625.
[36] Rezk A R, Qi A, Friend J R, et al. Uniform mixing in paperbased microfluidic systems using surface acoustic waves[J]. Lab on a Chip, 2012, 12(4):773-779.
[37] Destgeer G, Im S, Ha B H, et al. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves[J]. Applied Physics Letters, 2014, 104(2):023506.
[38] Yeo L Y, Friend J R. Ultrafast microfluidics using surface acoustic waves[J]. Biomicrofluidics, 2009, 3(1):381-393.
[39] Wixforth A. Acoustically driven planar microfluidics[J]. Superlattices & Microstructures, 2003, 33(5):389-396.
[40] 魏长智. 超声行波微流体驱动理论与技术研究[D]. 济南:山东大学, 2014. Wei Changzhi. Study on the theory and technology of traveling surface acoustic wave microfluidic drive[D]. Jinan:Shandong University, 2014.
[41] 黄远, 李以贵, 颜平, 等. 基于声表面波驱动器的液体单方向驱动[J]. 微纳电子技术, 2017, 54(1):26-30. Huang Yuan, Li Yigui, Yan Ping, et al. Liquid unidirectional actuation based on surface acoustic wave actuators[J]. Micronanoelectronic Technology, 2017, 54(1):26-30.
[42] Guttenberg Z, Muller H, Habermüller H, et al. Planar chip device for PCR and hybridization with surface acoustic wave pump[J]. Lab on a Chip, 2005, 5(3):308-317.
[43] Tan M K, Friend J R, Yeo L Y. Microparticle collection and concentration via a miniature surface acoustic wave device[J]. Lab on a Chip, 2007, 7(5):618-625.
[44] Li H, Friend J R, Yeo L Y. A scaffold cell seeding method driven by surface acoustic waves[J]. Biomaterials, 2007, 28(28):4098-4104.
[45] Rezk A R, Manor O, Friend J R, et al. Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films[J]. Nature Communications, 2012, 3(6):1167.
[46] Du X Y, Fu Y Q, Luo J K, et al. Microfluidic pumps employing surface acoustic waves generated in ZnO thin films[J]. Journal of Applied Physics, 2009, 105(2):647.
[47] Cecchini M, Girardo S, Pisignano D, et al. Acoustic-counterflow microfluidics by surface acoustic waves[J]. Applied Physics Letters, 2008, 92(10):9745.
[48] Girardo S, Cecchini M, Beltram F, et al. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels[J]. Lab on a Chip, 2008, 8(9):1557-1563.
[49] Brenker J C, Collins D J, Van P H, et al. On-chip droplet production regimes using surface acoustic waves[J]. Lab on a Chip, 2016, 16(9):1675.
[50] Wang T, Ni Q, Crane N, et al. Surface acoustic wave based pumping in a microchannel[J]. Microsystem Technologies, 2017, 23(5):1-8.
[51] Sesen M, Devendran C, Malikides S, et al. Surface acoustic wave enabled pipette on a chip[J]. Lab on a Chip, 2016, 17(3):438-447.
[52] Jin H J, Destgeer G, Park J, et al. Microfluidic flow switching via localized acoustic streaming controlled by surface acoustic waves[J]. RSC Advances, 2018, 8(6):3206-3212.
[53] Shilton R J, Glass N R, Chan P, et al. Rotational microfluidic motor for on-chip microcentrifugation[J]. Applied Physics Letters, 2011, 98(25):219.
[54] Glass N R, Shilton R J, Chan P P Y, et al. Miniaturized labon-a-disc (miniLOAD)[J]. Small, 2012, 8(12):1881-1888.
[55] Tan M K, Friend J R, Yeo L Y. Interfacial jetting phenomena induced by focused surface vibrations[J]. Physical Review Letters, 2009, 103(2):024501.
[56] Alvarez M, Friend J, Yeo L Y. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization[J]. Nanotechnology, 2008, 19(45):455103.
[57] Eggers J. Nonlinear dynamics and breakup of free-surface flows[J]. Review of Modern Physics, 1997, 69(3):865-929.
[58] Kurosawa M, Watanabe T, Futami A, et al. Surface acoustic wave atomizer[J]. Sensors & Actuators A Physical, 1995, 50(1/2):69-74.
[59] Friend J R, Yeo L Y, Arifin D R, et al. Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization[J]. Nanotechnology, 2008, 19(14):145301.
[60] Mao Z, Peng L, Wu M, et al. Enriching nanoparticles via acoustofluidics[J]. Acs Nano, 2017, 11(1):603-612.
[61] Collins D J, Ma Z, Han J, et al. Continuous micro-vortexbased nanoparticle manipulation via focused surface acoustic waves[J]. Lab on a Chip, 2016, 17(1):91.
[62] Ng J W, Devendran C, Neild A. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW)[J]. Lab on A Chip, 2017, 17(20):3489.
[63] Franke T, Braunmüller S, Schmid L, et al. Surface acoustic wave actuated cell sorting (SAWACS)[J]. Lab on a Chip, 2010, 10(6):789-794.
[64] Collins D J, Neild A, Ai Y. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting[J]. Lab on a Chip, 2016, 16(3):471-479.
[65] Ma Z, Collins D J, Ye A. Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave[J]. Analytical Chemistry, 2016, 88(10):5316.
[66] Ng J W, Collins D J, Devendran C, et al. Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves[J]. Microfluidics and Nanofluidics, 2016, 20(11):151.
[67] Collins D J, Khoo B L, Ma Z, et al. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming[J]. Lab on a Chip, 2017, 17(10):1769.
[68] Ma Z, Collins D J, Ai Y. Single-actuator bandpass microparticle filtration via traveling surface acoustic waves[J]. Colloid and Interface Science Communications, 2017, 16:6-9.
[69] Ma Z, Zhou Y, Collins D J, et al. Fluorescence activated cell sorting via a focused traveling surface acoustic beam[J]. Lab on a Chip, 2017, 17(18):3176.
[70] Destgeer G, Jung J H, Park J, et al. Acoustic impedancebased manipulation of elastic microspheres using travelling surface acoustic waves[J]. RSC Advances, 2017, 7(36):22524-22530.
[71] Destgeer G, Jin H J, Park J, et al. Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves[J]. Analytical Chemistry, 2016, 89(1):736.
[72] Gizeli E, Goddard N J, Lowe C R, et al. A Love plate biosensor utilising a polymer layer[J]. Sensors and Actuators B:Chemical, 1992, 6(1/3):131-137.
[73] Rasmusson A, Gizeli E. Comparison of poly (methylmethacrylate) and Novolak waveguide coatings for an acoustic biosensor[J]. Journal of Applied Physics, 2001, 90(12):5911-5914.
[74] Harding G L, Du J, Dencher P R, et al. Love wave acoustic immunosensor operating in liquid[J]. Sensors and Actuators A:Physical, 1997, 61(1-3):279-286.
[75] Schlensog M D, Gronewold T M A, Tewes M, et al. A Lovewave biosensor using nucleic acids as ligands[J]. Sensors and Actuators B:Chemical, 2004, 101(3):308-315.
[76] Joseph S, Gronewold T M A, Schlensog M D, et al. Specific targeting of ultrasound contrast agent (USCA) for diagnostic application:An in vitro feasibility study based on SAW biosensor[J]. Biosensors and Bioelectronics, 2005, 20(9):1829-1835.
[77] Jung A, Gronewold T M A, Tewes M, et al. Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system[J]. Sensors and Actuators B:Chemical, 2007, 124(1):46-52.
[78] Zhang Y, Yang F, Sun Z, et al. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay[J]. Analyst, 2017, 142(18):3468-3476.
[79] Senveli S U, Ao Z, Rawal S, et al. A surface acoustic wave biosensor for interrogation of single tumour cells in microcavities[J]. Lab on a Chip, 2016, 16(1):163-171.
[80] Wang W, Chen Y, Farooq U, et al. Ultrafast chemical-free cell lysis by high speed stream collision induced by surface acoustic waves[J]. Applied Physics Letters, 2017, 110(14):143504.
[81] Ren L, Zhou D, Mao Z, et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power[J]. ACS Nano, 2017, 11(10):10591-10598.
文章导航

/