[1] Weaver C S, Cole C A, Krumland R B, et al. The automatic classification of modulation types by pattern recognition[R]. Palo Alto:Stanford University California Stanford Electronics Labs, 1969.
[2] Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques:Classical approaches and new trends[J]. IET Communications, 2007, 1(2):137-156.
[3] Avci E, Avci D. A novel approach for digital radio signal classification:Wavelet packet energy-multiclass support vector machine (WPE-MSVM)[J]. Expert Systems with Applications, 2008, 34(3):2140-2147.
[4] Xu J L, Su W, Zhou M. Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2011, 41(4):455-469.
[5] Wu H C, Saquib M, Yun Z. Novel automatic modulation classification using cumulant features for communications via multipath channels[J]. IEEE Transactions on Wireless Communications, 2008, 7(8):3098-3105.
[6] Xu J L, Su W, Zhou M C. Software-defined radio equipped with rapid modulation recognition[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4):1659-1667.
[7] Ramkumar B. Automatic modulation classification for cognitive radios using cyclic feature detection[M]. IEEE Press, 2009.
[8] Ali A, Yangyu F, Liu S. Automatic modulation classification of digital modulation signals with stacked autoencoders[J]. Digital Signal Processing, 2017, 71:108-116.
[9] Zhou Q, Lu H, Jia L, et al. Automatic modulation classification with genetic backpropagation neural network[C]//Evolutionary Computation. Piscataway NJ:IEEE, 2016:4626-4633.
[10] Xiang F, Li J. A hierarchical digital modulation classification algorithm for adaptive wireless communication systems[J]. Wireless Personal Communications, 2006, 39(3):321-326.
[11] Liang W U, Hua J, Cui W L. Modulation classification using cyclostationarity test and support vector machine[J]. Journal of Applied Sciences, 2013, 31(6):593-600.
[12] 罗利春. 无线电侦察信号分析与处理[M]. 北京:国防工业出版社, 2003. Luo Lichun. Radio reconnaissance signal analysis and processing[M]. Beijing:National Defense Industry Press, 2003.
[13] Azzouz E E, Nandi A K. Automatic identification of digital modulation types[J]. Signal Processing, 1995, 47(1):55-69.
[14] Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on communications, 2000, 48(3):416-429.
[15] Panagiotou P, Anastasopoulos A, Polydoros A. Likelihood ratio tests for modulation classification[C]//Century Military Communications Conference Proceedings. Piscataway NJ:IEEE, 2000(2):670-674.
[16] Huan C Y, Polydoros A. Likelihood methods for MPSK modulation classification[J]. IEEE Transactions on Communications, 1995, 43(234):1493-1504.
[17] Wei W, Mendel J M. Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE Transactions on Communications, 2000, 48(2):189-193.
[18] Hameed F, Dobre O A, Popescu D C. On the likelihoodbased approach to modulation classification[J]. IEEE Transactions on Wireless Communications, 2009, 8(12):5884-5892.
[19] Liedtek F F. Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters[J]. Signal Processing, 1984, 6(4):311-323.
[20] Nandi A K, Azzouz E E. Automatic analogue modulation recognition[J]. Signal Processing 1995, 46(2):211-222.
[21] Nandi A K, Azzouz E E. Automatic identification of digital modulation types[J]. Signal Processing, 1995, 47(1):55-69.
[22] Nandi A K, Azzouz E E. Algorithms for automatic modulation recognition of communication signals[J]. IEEE Transactions on Communications, 1998, 46(4):431-436.
[23] 谭正骄, 施继红, 胡继峰. 基于随机森林的低阶数字调制识别算法研究[J]. 通信技术, 2018, 51(3):527-532. Tan Zhengjiao, Shi Jihong, Hu Jifeng. Low-order digital modulation recognition algorithm based on random forest[J]. Communications Technology, 2018, 51(3):527-532.
[24] Gardner W, Franks L. Characterization of cyclostationary random signal processes[J]. IEEE Transactions on Information Theory, 1975, 21(1):4-14.
[25] Gardner W, Brown W, Chen C K. Spectral correlation of modulated signals:Digital modulation(Part Ⅱ)[J]. IEEE Transactions on Communications, 1987, 35(6):595-601.
[26] Gardner W A, Spooner C M. Cyclic spectral analysis for signal detection and modulation recognition[C]//Military Communications Conference. Piscataway NJ:IEEE, 1988:419-424.
[27] Gardner W. Spectral correlation of modulated signals:Part I:Analog modulation[J]. IEEE Transactions on Communications, 1987, 35(6):584-594.
[28] 朱德君. 谱相关理论在电子侦察中的应用[J]. 电子对抗, 1995, 1(2):43-57. Zhu Dejun. Application of spectral correlation theory in electronic reconnaissance[J]. Electronic Warfare, 1995, 1(2):43-57.
[29] 韩国栋, 蔡斌, 邬江兴. 调制分析与识别的谱相关方法[J]. 系统工程与电子技术, 2001, 23(3):34-36. Han Guodong, Cai Bin, Wu Jiangxing. Spectral correlation method for modulation recognition[J]. Systems Engineering and Electronics, 2001, 23(3):34-36.
[30] 吕杰, 张胜付, 张克, 等. 移动通信信号自动调制识别的谱相关方法[J]. 电讯技术, 1999(2):9-14. Lv Jie, Zhang Shengfu, Zhang Ke, et al. Automatic modulation recognition of mobile communication signals using spectral correlation approach[J]. Telecommunication Engineering, 1999(2):9-14.
[31] Delprat N, Escudié B, Guillemain P, et al. Asymptotic wavelet and Gabor analysis:Extraction of instantaneous frequencies[J]. IEEE transactions on Information Theory, 1992, 38(2):644-664.
[32] Ho K C, Prokopiw W, Chan Y T. Modulation identification of digital signals by the wavelet transform[J]. IEEE ProceedingsRadar, Sonar and Navigation, 2000, 147(4):169-176.
[33] Zhao Z J, Shang J N. A new method for modulation type recognition based on the time frequency representations[C]//The 6th International Conference on Signal Processing. Piscataway NJ:IEEE, 2002, 1:208-211.
[34] 范海波, 杨志俊, 曹志刚. 卫星通信常用调制方式的自动识别[J]. 通信学报, 2004, 25(1):140-149. Fan Haibo, Yang Zhijun, Cao Zhigang. Automatic recognition for common used modulations in satellite communication[J]. Journal of China Institute of Communications, 2004, 25(1):140-149.
[35] Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on communications, 2000, 48(3):416-429.
[36] Dobre O A, Bar-Ness Y, Su W. Higher-order cyclic cumulants for high order modulation classification[C]//Military Communications Conference. Piscataway NJ:IEEE, 2003, 1:112-117.
[37] Dai W, Wang Y, Wang J. Joint power estimation and modulation classification using second-and higher statistics[C]//Wireless Communications and Networking Conference. Piscataway NJ:IEEE, 2002, 1:155-158.
[38] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436.
[39] 胡宗恺, 熊刚. 一种改进的认知无线电调制识别方法研究[J]. 通信技术, 2018, 51(5):1036-1040. Hu Zongkai, Xiong Gang. Modified modulation recognition method for cognitive radio[J]. Communications Technology, 2018, 51(5):1036-1040.
[40] O'Shea T J, Corgan J, Clancy T C. Convolutional radio modulation recognition networks[C]//International conference on engineering applications of neural networks. Aberdeen:Springer, 2016:213-226.
[41] Migliori B, Zeller-Townson R, Grady D, et al. Biologically inspired radio signal feature extraction with sparse denoising autoencoders[J/OL].[2018-08-31]. https://arxiv.org/pdf/1605.05239.pdf
[42] 张永乐. 基于CNN架构的通信信号调制模式分类识别研究[D]. 沈阳:沈阳航空航天大学, 2018. Zhang Yongle. Research on classification and recognition of communication signals modulation mode based on CNN architecture[D]. Shenyang:Shenyang Aerospace University, 2018.
[43] 裴禹豪, 曲毅, 李锦明, 等. 基于AlexNet网络的MPSK与MQAM类信号的调制识别[J]. 激光杂志, 2018, 39(10):75-78. Pei Yuhao, Qu Yi, Li Jinming, et al. Modulation recognition of MPSK and MQAM signals based on AlexNet[J]. Laser Journal, 2018(10):75-78.
[44] Zhang M, Diao M, Guo L. Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5:11074-11082.
[45] Zhang H, Sun H. Automatic modulation classification using stacked sparse auto-encoders[C]//2016 IEEE 13th International Conference on Signal Processing. Piscataway NJ:IEEE, 2017:248-252.
[46] Li J, Qi L, Lin Y. Research on modulation identification of digital signals based on deep learning[C]//IEEE International Conference on Electronic Information and Communication Technology. Piscataway NJ:IEEE, 2017:402-405.
[47] West N E, ÓShea T. Deep architectures for modulation recognition[C]//IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway NJ:IEEE, 2017:1-6.
[48] Fu J, Zhao C, Li B, et al. Deep learning based digital signal modulation recognition[C]//The Proceedings of the Third International Conference on Communications, Signal Processing, and Systems. Hohhot:Springer, 2015:955-964.
[49] Yang G Q, Yang G Q. Modulation classification based on extensible neural networks[J]. Mathematical Problems in Engineering, 2017, 2017:1-10.