综述

2018年无人机领域热点评述

  • 段海滨 ,
  • 申燕凯 ,
  • 王寅 ,
  • 罗德林 ,
  • 牛轶峰
展开
  • 1. 北京航空航天大学自动化科学与电气工程学院, 仿生自主飞行系统研究组, 北京 100083;
    2. 南京航空航天大学航天学院, 南京 210016;
    3. 厦门大学航空航天学院, 厦门 361005;
    4. 国防科技大学智能科学学院, 长沙 410073
段海滨,教授,研究方向为无人机集群仿生自主控制、计算机仿生视觉和仿生智能计算,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2018-12-10

  修回日期: 2019-01-22

  网络出版日期: 2019-02-27

基金资助

国家自然科学基金项目(61673327,61876187,91648205)

Review of technological hot spots of unmanned aerial vehicle in 2018

  • DUAN Haibin ,
  • SHEN Yankai ,
  • WANG Yin ,
  • LUO Delin ,
  • NIU Yifeng
Expand
  • 1. Bio-inspired Autonomous Flight Systems(BAFS) Research Group, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China;
    4. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Received date: 2018-12-10

  Revised date: 2019-01-22

  Online published: 2019-02-27

摘要

无人机集群和反无人机技术作为未来无人机发展的重要方向,已经成为研究热点,科技创新和相关政策的推动为无人机产业的蓬勃发展提供了持续动力。本文从无人机系统发展新路线、实战化应用、集群自主控制、创新驱动产业等多个角度,总结了2018年无人机领域的科技热点及发展态势。

本文引用格式

段海滨 , 申燕凯 , 王寅 , 罗德林 , 牛轶峰 . 2018年无人机领域热点评述[J]. 科技导报, 2019 , 37(3) : 82 -90 . DOI: 10.3981/j.issn.1000-7857.2019.03.013

Abstract

As an important direction of future UAV development, UAV swarm technology and anti-UAV technology have become hot issues in 2018. The UAV industry will have sustainable development under the promotion of technological innovation and relevant policies. This article analyzes and summarizes the hot topics and the new development trend of unmanned aerial vehicle (UAV) from the aspects of the new roadmap of unmanned aircraft system (UAS), practical applications, swarm autonomous control and technological innovation in 2018.

参考文献

[1] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京:科学出版社, 2018. Duan Haibin, Qiu Huaxin. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing:Science Press, 2018.
[2] Duan H B, Li P. Bio-inspired computation in unmanned aerial vehicles[M]. Heidelberg:Springer-Verlag Berlin, 2014.
[3] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25. Duan Haibin, Li Pei. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science & Technology Review, 2017, 35(7):17-25.
[4] Duan H B, Qiu H X. Unmanned aerial vehicle distributed formation rotation control inspired by leader-follower reciprocation of migrant birds[J]. IEEE Access, 2018, 6:23431-23443.
[5] 赵煦. 走向智能自主的无人机控制技术[J]. 科技导报, 2017, 35(7):1. Zhao Xu. Trend of intelligent and autonomous UAV control technology[J]. Science & Technology Review, 2017, 35(7):1.
[6] 段海滨, 邱华鑫, 陈琳, 等. 无人机自主集群技术研究展望[J].科技导报, 2018, 36(21):90-98. Duan H B, Qiu H X, Chen L, et al. Prospects on unmanned aerial vehicle autonomous swarm technology[J]. Science & Technology Review, 2018, 36(21):90-98.
[7] Department of the Navy Strategic Roadmap for unmanned systems (short version)[EB/OL]. (2018-05-29)[2018-12-20]. https://news.usni.org/2018/05/29/summary-department-navy-strategic-unmanned-systems-roadmap.
[8] Fachey K M, Miller M J. DON strategic roadmap for unmanned system 2017-2042[R]. Arlington County:Office of the Secretary of Defense, 2018.
[9] Standardization roadmap for unmanned aircraft systems (Version 1.0)[EB/OL]. (2018-09-20)[2018-12-20]. https://share.ansi.org/Shared%20Documents/Standards%20Activities/UASSC/ANSI_UASSC_Roadmap_December_2018.pdf.
[10] 无人机系统发展白皮书(2018)[EB/OL]. (2018-11-06)[2018-12-20]. http://www.xinhuanet.com//2018-11/06/c_112-3672303.html. White paper on UAV system development (2018)[EB/OL]. (2018-11-06)[2018-12-20]. http://www.xinhuanet.com//2018-11/06/c_1123672303.html.
[11] 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学(技术科学), 2017, 47(3):230-238. Zhou Ziwei, Duan Haibin, Fan Yanming. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica Technologica, 2017, 47:230-238.
[12] 段海滨, 罗琪楠. 仿自然界鸽群行为的无人机集群自主控制[J]. 系统与控制纵横, 2018, 5(2):28-36. Duan Haibin, Luo Qinan. The UAV swarm automatic control imitating the behavior of pigeons in nature[J]. All About System and Control & Technology Review, 2018, 5(2):28-36.
[13] 段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J]. 中国科学(信息科学), 2019, 49(2):1-8. Duan Haibin, Zhang Daifeng, Fan Yanming, et al. From wolf packs intelligence to UAV cooperative decision[J]. Scientia Sinica Informationis, 2019, 49(2):1-8.
[14] Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China Information Sciences, 2019, 62(1):0114201:1-014201:3.
[15] Katie Langin. Meet ‘Chirocopter’:A drone that flies within swarms of bats[EB/OL]. (2018-03-09)[2018-12-20]. http://www.sciencemag.org/news/2018/03/meet-chirocopter-drone-flies-within-swarms-bats.
[16] Matěj K, Florian T. M, Christophe D W. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361:1089-1094.
[17] 蒋婉玥, 王道波, 王寅, 等. 基于时变向量场的多无人机编队集结控制方法[J]. 控制理论与应用, 2018, 35(9):1215-1228. Jiang Wanyue, Wang Daobo, Wang Yin, et al. A vector field based method for multi-UAV simultaneous arrival[J]. Control Theory & Applications, 2018, 35(9):1215-1228.
[18] 沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 2版. 北京:国防工业出版社, 2018. Shen Lincheng, Niu Yifeng, Zhu Huayong. Theories and methods of autonomous cooperative control for multiple uavs[M]. 2nd ed. Beijing:National Defense Industry Press, 2018.
文章导航

/