专题:2018年科技回眸

2018年清洁能源开发热点回眸

  • 李存璞 ,
  • 黄寻 ,
  • 魏子栋
展开
  • 重庆大学化学化工学院, 重庆 400044
李存璞,副教授,研究方向为锂硫电池、燃料电池,电子信箱:lcp@cqu.edu.cn

收稿日期: 2018-01-05

  修回日期: 2018-01-10

  网络出版日期: 2019-01-29

基金资助

国家自然科学基金项目(21606027,21802011)

Review on research hotspots of clean energy in 2018

  • LI Cunpu ,
  • HUANG Xun ,
  • WEI Zidong
Expand
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

Received date: 2018-01-05

  Revised date: 2018-01-10

  Online published: 2019-01-29

摘要

2018年清洁能源领域取得了一系列激动人心的进展,提出了液态阳光的概念,不依赖p-n结的光伏转化新原理被发现以及锂硫电池步入商业化应用等。本文评述了太阳能电池、燃料电池、锂电池及生物质能源等技术在2018年的重要突破,并展望了未来清洁能源领域的发展方向。

本文引用格式

李存璞 , 黄寻 , 魏子栋 . 2018年清洁能源开发热点回眸[J]. 科技导报, 2019 , 37(1) : 113 -120 . DOI: 10.3981/j.issn.1000-7857.2019.01.012

Abstract

In 2018,many exciting breakthroughs were achieved in the clean energy field,e.g., theliquid sunshine concept, photovoltaic effect in the absence of a p-n junction, and commercialization of Li-sulfur battery. In this paper, we introduce the concept of liquid sunshine, review the representative hotspots in fuel cell, lithium battery and biomass energy, and prospect the future development of clean energy.

参考文献

[1] Shih C F, Zhang T, Li J, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10):1925-1949.
[2] Li Z, Wang W, Liao S, et al. Integrating a redox flow battery into a Z-scheme water splitting system for enhancing the solar energy conversion efficiency[J]. Energy & Environmental Science, 2019, doi:10.1039/c8ee01299g.
[3] Lee S K, Kondo M, Okamura M, et al. Function-Integrated Ru catalyst for photochemical CP2 reduction[J]. Journal of American Chemistry Socioty, 2018, 140(49):16899-16903.
[4] Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site:A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[J]. Journal of the American Chemical Society, 2018, 140(12):4218-4221.
[5] Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie, 2018, 130(7):1962-1966.
[6] Liu X, Kang F, Hu C, et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme[J]. Nature chemistry, 2018, 10(12):1201.
[7] Service R F. Liquid sunshine[J]. Science, 2018, 361(6398):120.
[8] Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9μg NH3 mg cat-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40):1870301.
[9] Yang M M, Kim D J, Alexe M. Flexo-photovoltaic effect[J]. Science, 2018, doi:10.1126/science.aan3256.
[10] Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407):1094-1098.
[11] Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammoniumfree, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413):449-453.
[12] Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for oxygen reduction reaction[J]. Angewandte Chemie, 2018, doi:10.1002/ange.201812423.
[13] Zhuang L, Li Q, Peng H, et al. Pt is comparable to Pt-Ru on catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80℃[J]. Angewandte Chemie, 2018, doi:10.1002/ange.201812662.
[14] Duan C, Kee R J, Zhu H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557(7704):217-222.
[15] An H, Lee H W, Kim B K, et al. A 5×5 cm2 protonic ceramic fuel cell with a power density of 1.3 W·cm-2 at 600℃[J]. Nature Energy, 2018, 3(10):870-875.
[16] Choi S, Kucharczyk C J, Liang Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nature Energy, 2018, 3(3):202-210.
[17] Asadi M, Sayahpour B, Abbasi P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697):502-506.
[18] Xia C, Kwok C Y, Nazar L F. A high-energy-density lithiumoxygen battery based on a reversible four-electron conversion to lithium oxide[J]. Science, 2018, 361(6404):777-781.
[19] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3):194-206.
[20] Shi F, Pei A, Vailionis A, et al. Strong texturing of lithium metal in batteries[J]. PNAS, 2017, 114(46):12138-12143.
[21] Shi F, Pei A, Boyle D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. PNAS, 2018, 115(34):8529-8534.
[22] Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3):227-235.
[23] Service R F. Lithium-sulfur batteries poised for leap[J]. Science, 2018, 359(6380):1080-1081.
[24] Liu K, Liu Y, Lin D, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6):eaas9820.
[25] Goodenough J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, doi:10.1038/s41928-018-0048-6.
[26] Wang C, Zhao Y, Sun Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53:168-174.
[27] Asano T, Sakai A, Ouchi S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44):1803075.
[28] Gao H, Xin S, Xue L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4):833-844.
[29] Xu J L, Li N, Li G Y, et al. Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone[J]. Green Chemistry, 2018, 20, 3753-3761.
[30] Wang C T, Liu Z Q, Wang L, et al. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts[J]. ACS Catalysis, 2018, 8(1):474-481.
[31] Hammerer F, Loots L, Do J L, et al. Solvent-free enzyme activity:Quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose[J]. Angewandte Chemie International Edition, 2018, 57(10):2621-2624.
[32] Gallagher J. Breaking down biomass[J]. Nature Energy, 2018, 3(3):162.
文章导航

/