[1] Shih C F, Zhang T, Li J, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10):1925-1949.
[2] Li Z, Wang W, Liao S, et al. Integrating a redox flow battery into a Z-scheme water splitting system for enhancing the solar energy conversion efficiency[J]. Energy & Environmental Science, 2019, doi:10.1039/c8ee01299g.
[3] Lee S K, Kondo M, Okamura M, et al. Function-Integrated Ru catalyst for photochemical CP2 reduction[J]. Journal of American Chemistry Socioty, 2018, 140(49):16899-16903.
[4] Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site:A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[J]. Journal of the American Chemical Society, 2018, 140(12):4218-4221.
[5] Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie, 2018, 130(7):1962-1966.
[6] Liu X, Kang F, Hu C, et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme[J]. Nature chemistry, 2018, 10(12):1201.
[7] Service R F. Liquid sunshine[J]. Science, 2018, 361(6398):120.
[8] Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9μg NH3 mg cat-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40):1870301.
[9] Yang M M, Kim D J, Alexe M. Flexo-photovoltaic effect[J]. Science, 2018, doi:10.1126/science.aan3256.
[10] Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407):1094-1098.
[11] Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammoniumfree, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413):449-453.
[12] Liu J, Jiao M, Mei B, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for oxygen reduction reaction[J]. Angewandte Chemie, 2018, doi:10.1002/ange.201812423.
[13] Zhuang L, Li Q, Peng H, et al. Pt is comparable to Pt-Ru on catalyzing the hydrogen oxidation reaction for alkaline polymer electrolyte fuel cells operated at 80℃[J]. Angewandte Chemie, 2018, doi:10.1002/ange.201812662.
[14] Duan C, Kee R J, Zhu H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557(7704):217-222.
[15] An H, Lee H W, Kim B K, et al. A 5×5 cm2 protonic ceramic fuel cell with a power density of 1.3 W·cm-2 at 600℃[J]. Nature Energy, 2018, 3(10):870-875.
[16] Choi S, Kucharczyk C J, Liang Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nature Energy, 2018, 3(3):202-210.
[17] Asadi M, Sayahpour B, Abbasi P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697):502-506.
[18] Xia C, Kwok C Y, Nazar L F. A high-energy-density lithiumoxygen battery based on a reversible four-electron conversion to lithium oxide[J]. Science, 2018, 361(6404):777-781.
[19] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3):194-206.
[20] Shi F, Pei A, Vailionis A, et al. Strong texturing of lithium metal in batteries[J]. PNAS, 2017, 114(46):12138-12143.
[21] Shi F, Pei A, Boyle D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. PNAS, 2018, 115(34):8529-8534.
[22] Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3):227-235.
[23] Service R F. Lithium-sulfur batteries poised for leap[J]. Science, 2018, 359(6380):1080-1081.
[24] Liu K, Liu Y, Lin D, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6):eaas9820.
[25] Goodenough J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, doi:10.1038/s41928-018-0048-6.
[26] Wang C, Zhao Y, Sun Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53:168-174.
[27] Asano T, Sakai A, Ouchi S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44):1803075.
[28] Gao H, Xin S, Xue L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4):833-844.
[29] Xu J L, Li N, Li G Y, et al. Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone[J]. Green Chemistry, 2018, 20, 3753-3761.
[30] Wang C T, Liu Z Q, Wang L, et al. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts[J]. ACS Catalysis, 2018, 8(1):474-481.
[31] Hammerer F, Loots L, Do J L, et al. Solvent-free enzyme activity:Quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose[J]. Angewandte Chemie International Edition, 2018, 57(10):2621-2624.
[32] Gallagher J. Breaking down biomass[J]. Nature Energy, 2018, 3(3):162.