[1] 张华煜, 陈上, 朱彤, 等. 含有绝热压缩空气储能的分布式能源系统供能特性研究[J]. 中国电机工程学报, 2018, 38(增刊1):142-150. Zhang Huayu, Chen Shang, Zhu Tong, et al. Performance analysis of distributed energy systemwith adiabatic compressed air energy storage[J]. Proceedings of the CSEE, 2018, 38(Suppl 1):142-150.
[2] 严毅, 张承慧, 李珂, 等. 含压缩空气储能的冷热电联供微网优化运行策略[J]. 中国电机工程学报, 2018, 38(23):6924-6936, 7126. Yan Yi, Zhang Chenghui, Li Ke, et al. The optimal operation strategy for hybrid combined cooling, heating and power microgrid with compressed air energy storage[J]. Proceedings of the CSEE, 2018, 38(23):6924-6936, 7126.
[3] Amirhassan S, Maryam F, Muhammadali A A, et al. Exergy analysis and optimization of a CCHP system composed of compressed air energy storage system and ORC cycle[J]. Energy Conversion and Management, 2018, 157:111-122.
[4] Yan Y, Zhang C H, Li K, et al. An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage[J]. Applied Energy, 2018, 210:1151-1166.
[5] 杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性[J]. 中国电机工程学报, 2017, 37(18):5350-5358, 5534. Yang Cheng, Wang Xusheng, Zhang Chi, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage[J]. Proceedings of the CSEE, 2017, 37(18):5350-5358,5534.
[6] 王维萌, 黄葆华, 宋亚军, 等. 10MW级深冷液化空气储能发电系统工程化应用研究进展[J]. 热能动力工程, 2018(12):1-7. Wang Weimeng, Huang Baohua,Song Yajun, et al. Research progress on the industrial application of the 10 MW power generation system based on liquid air energy storage technology[J]. Journal of Engineering for Thermal Energy and Power, 2018(12):1-7.
[7] 安保林, 王俊杰, 段远源. 联合液化空气储能的有机朗肯循环研究[J]. 工程热物理学报, 2018, 39(3):471-475. An Baolin, Wang Junjie, Duan Yuanyuan. Research on the combining of organic rankine cycle and liquid air energy storage system[J]. Journal of Engineering Thermophysics, 2018, 39(3):471-475.
[8] 何青, 王立健, 刘文毅. 深冷液化空气储能系统的热力学建模及分析[J]. 华中科技大学学报(自然科学版), 2018, 46(10):127-132. He Qing, Wang Lijian, Liu Wenyi. Thermodynamic model and exergy analysis of cryogenic liquefied air energy storage system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(10):127-132.
[9] Krawczyk P, Szabłowski Ł, Karellas S, et al. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems[J]. Energy, 2018, 142:46-54.
[10] 韩红静, 梅生伟, 王国华, 等. 盐穴电池储能技术及发展前景[J]. 全球能源互联网, 2018, 1(3):313-321. Han Hongjing, Mei Shengwei, Wang Guohua, et al. Salt cavern battery energy storage technology and development prospects[J]. Journal of Global Energy Interconnection, 2018, 1(3):313-321
[11] 何子伟, 罗马吉, 涂正凯, 等. 温压缩空气储能技术综述[J]. 热能动力工程, 2018, 33(2):1-6. He Ziwei, Luo Maji, Tu Zhengkai. Survey of the Isothermal compressed air energy storage technologies[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2):1-6.
[12] 梅生伟, 公茂琼, 秦国良, 等. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 2017, 41(10):3392-3399. Mei Shengwei, Gong Maoqiong, Qin Guoliang, et al. An advanced adiabatic compressed air energy system based on salt cavern air storage and its application prospects[J]. Power System Technology, 2017, 41(10):3392-3399.
[13] 傅昊, 张毓颖, 崔岩, 等. 压缩空气储能技术研究进展[J]. 科技导报, 2016, 34(23):81-87. Fu Hao, Zhang Yuying, Cui Yan, et al. Research development of compressed air energy storage systems[J]. Science and Technology Review, 2016, 34(23):81-87.
[14] Yan B, Wieberdink J, Shirazi F, et al. Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts[J]. Applied Energy, 2015, 154:40-50.
[15] Chao Z, Perry Y L, James D, et al. Design analysis of a liquid-piston compression chamber with application to compressed air energy storage[J]. Applied Thermal Engineering, 2016, 101:704-709.
[16] Anirudh S, Perry Y L, Farzad S How moisture content affects the performance of a liquid piston air compressor/expander[J]. Journal of Energy Storage, 2018, 18:121-132.
[17] Chao Q, Eric L. Liquid piston compression efficiency with droplet heat transfer[J]. Applied Energy, 2014, 114:539-550
[18] Adewale O, Edem K, Zaky H, et al. Near-isothermal-isobaric compressed gas energy storage[J]. Jouranl of Energy Storage, 2017, 12:276-287.
[19] Zhang X, Xu Y, Zhou X, et al. A near-isothermal expander for isothermal compressed air energy storage system[J]. Applied Energy, 2018, 225:955-964.
[20] Jia G W, Xu W Q, Mao L, et al. Micron-sized water spraycooled quasi-isothermal compression for compressed air energy storage[J]. Experimental Thermal & Fluid Science, 2018, 96:470-481.
[21] Fu H, Jiang T, Cui Y, et al. Adaptive hydraulic potential energy transfer technology and its application to compressed air energy storage[J]. Energies, 2018, 11(7):1-13.
[22] Erren Y, Huanran W, Long L, et al. A novel constant-pressure pumped hydro combined with compressed air energy storage system[J]. Energies, 2015, 8(1):154-171.
[23] Chun T C, Cheng G S, Pei L W, et al. An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids[J]. Energy, 2018, 163:722-733.
[24] Bahadur S P, Shelly V. A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas[J]. Renewable Energy, 2018, 127:802-810.