[1] The International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361(6403):eaar-7191. doi:10.1126/science.aar7191.
[2] Ling H Q, Ma B, Shi X L, et al. Genome sequence of the progenitor of wheat a subgenome Triticum Urartu[J]. Nature, 2018, 557:424-428.
[3] 基因研究有助于培育低致敏小麦[EB/OL].(2018-08-22). http://news.bioon.com/article/6726251.html.
[4] 澳科学家开发出更有利肠道健康的小麦新品种[EB/OL]. (2017-12-19). http://news.bioon.com/article/6714669.html.
[5] Liang Z, Chen K L, Zhang Y, et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins[J]. Nature Protocols, 2018, 13:413-430. doi:10.1038/nprot.2017.145.
[6] Hu B, Wang W, Ou S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7):834-838. doi:10.1038/ng.3337.
[7] Sun H Y, Qian Q, Wu K, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46:652-656. doi:10.1038/ng.2958.
[8] Wang W, Hu B, Yuan D Y, et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell, 2018, 30:638-651. doi:10.1105/tpc.17.00809.
[9] Mach S. The real yield deal? Nitrate transporter expression boosts yield and accelerates maturation[J]. The Plant Cell, 2018, doi:10.1105/tpc.18.00195.
[10] Wang Q, Nian J Q, Xie X Z, et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications, 2018, 9:735. doi:10.1038/s41467-017-02781-w.
[11] Liu C Z, Xue Z H, Tang D, et al. Ornithine δ-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice[J]. The Plant Journal, 2018, 96(4):842-854. doi:10.1111/tpj.14072.
[12] Wang W S, Mauleon R, Hu Z Q, et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557:43-49. doi:10.1038/s41586-018-0063-9.
[13] Yu X W, Zhao Z G, Zheng X M, et al. A selfish genetic element confers non-Mendelian inheritance in rice[J]. Science, 2018, 360(6393):1130-1132. doi:10.1126/science.aar4279.
[14] Zhao Q, Feng Q, Lu H Y, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nature Genetics, 2018, 50:278-284. doi:10.1038/s41588-018-0041-z.
[15] Xu P, Duan P G, Yu H Y, et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant, 2018, 11(6):860-873. doi:10.1016/j.molp.2018.04.004.
[16] Xu R, Yu H Y, Wang J M, et al. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice[J]. The Plant Journal, 2018, 95(6):937-946. doi:10.1111/tpj.13971.
[17] Ruan B P, Hua Z H, Zhao J, et al. OsACL-A2 negatively regulates cell death and disease resistance in rice[J]. Plant Biotechnology Journal, 2018, doi:10.1111/pbi.13058.
[18] Heng Y Q, Wu C Y, Long Y, et al. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport[J]. The Plant Cell, 2018, 30(4):889-906. doi:10.1105/tpc.17.009982018.
[19] Ma S Q, Tang N, Li X, et al. Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice[J]. Molecular Plant, 2018, doi:10.1016/j. molp.2018.12.005.
[20] Wang Q, Li Y Y, Ishikawa K, et al. Resistance protein Pit interacts with the GEF OsSPK1 to activate OsRac1 and trigger rice immunity[J]. PNAS, 2018, 115(49):E11551-E11560. doi:10.1073/pnas.1813058115.
[21] Chen S H, Zhou L J, Xu P, et al. SPOC domain-containing protein leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling[J]. PLoS Genetics, 2018,14(11):e1007829. doi:10.1371/journal.pgen.1007829.
[22] Ruan W Y, Guo M N, Xu L, et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice[J]. The Plant Cell, 2018, 30:853-870. doi:10.1105/tpc.17.00738.
[23] Liu J X, Wu X B, Yao X F, et al. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains[J]. PNAS, 2018, 115(44):11327-11332. doi:10.1073/pnas.1806304115.
[24] Liu C, Zheng S, Gui J S, et al. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice[J]. Molecular Plant, 2018, 11(2):288-299. doi:10.1016/j.molp.2017.12.004.
[25] Liu Q, Han R, Wu K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, 9(1):852. doi:10.1038/s41467-018-03047-9.
[26] Ying J Z, Ma M, Bai C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5):750-753.
[27] Fang J J, Yuan S J, Li C C, et al. Reduction of ATPase activity in the rice kinesin protein stemless dwarf 1 inhibits cell division and organ development[J]. The Plant Journal, 2018, 96(3):620-634.
[28] Liu X, Li D Y, Zhang D L, et al. A novel antisense long noncoding RNA, twisted leaf, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice[J]. New Phytologist, 2018, 218(2):774-788. doi:10.1111/nph. 15023.
[29] Guo T, Chen K, Dong N Q, et al. Grain size and number1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice[J]. The Plant Cell, 2018, 30(4):871-888. doi:10.1105/tpc.17.00959.
[30] Liu C L, Chen G, Li Y Y, et al. Characterization of a major QTL for manganese accumulation in rice grain[J]. Scientific Reports, 2018, 7:17704. doi:10.1038/s41598-017-18090-7.
[31] Wang J, Zhou L, Shi H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406):1026-1028. doi:10.1126/science.aat7675.
[32] Zhang L H, Hu B, Deng K, et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation[J]. Plant Biotechnology Journal, 2018,doi:10.1111/pbi.13037.
[33] Luo J S, Huang J, Zeng D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9:645. doi:10.1038/s41467-018-03088.
[34] Xue Z Y, Xu X, Zhou Y, et al. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice[J]. Nature Communications, 2018, 9:604. doi:10.1038/s41467-018-03048-8.
[35] Zhang N, Yu H, Yu H, et al. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin[J]. The Plant Cell, 2018, 30:1461-1475. doi:10.1105/tpc.18.00063.
[36] Li S Y, Li J Y, Zhang J H, et al. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice[J]. Journal of Experimental Botany, 2018, 69(20):4715-4721. doi:10.1093/jxb/ery245.
[37] Vamvaka E, Farré G, Molinos-Albert L M. Molinos-Albert, et al. Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm[J]. PNAS, 2018, 115(33):E7854-E7862. doi:10.1073/pnas.1806022115.
[38] Bin R, Fang Y, Yongjie K, et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant[J]. Molecular Plant, 2018, 11(4):623-626. doi:10.1016/j.molp.2018.01.005.
[39] Yan F, Kuang Y J, Ren B, et al. Highly efficient A·T to G·C base editing by Cas9n-Guided tRNA adenosine deaminase in rice[J]. Molecular Plant, 2018, 11(4):631-634. doi:10.1016/j. molp.2018.01.005.
[40] Deng H J, Cheema J, Zhang H, et al. Rice In Vivo RNA structurome reveals RNA secondary structure conservation and divergence in plants[J]. Molecular Plant, 2018, 11(4):607-622. doi:10.1016/j.molp.2018.01.008.
[41] Kistler L, Maezumi S Y, de Souza J G, et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America[J]. Science, 2018, 362(6420):1309-1313. doi:10.1126/science.aav0207.
[42] 基因研究揭示玉米驯化史[EB/OL].(2018-12-20). http://ex.cssn.cn/sjs/sjs_hqzs/201812/t20181220_4796441.shtml.
[43] 作科所在控制玉米倒伏性研究中获重要进展[EB/OL]. (2018-04-04). http://ics.caas.cn/xwdt/kyjz/131706.htm.
[44] Zheng J, He C, Qin Y, et al. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize[J]. The Plant Journal, 2018, doi:10.1111/tpj.14140.
[45] Yang J, Fu M M, Ji C, et al. Maize oxalyl-CoA decarboxylase1 degrades oxalate and affects the seed metabolome and nutritional quality[J]. The Plant Cell, 2018, 30:2447-2462. doi:10.1105/tpc.18.00266.
[46] Zhang D, Sun W, Singh R, et al. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize[J]. The Plant Cell, 2018, 30:360-374. doi:10.1105/tpc.17. 00791.
[47] Zhang Z G, Zhang B C, Chen Z B, et al. A pectin methylesterase gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility[J]. Nature Communications, 2018, 9:3678. doi:10.1038/s41467-018-06139-8.
[48] Du Q G, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiology, 2018, 177:1743-1753. doi:10.1104/pp.18.00034.
[49] 中国农科院作科所与河南农大科学家合力解析玉米籽粒发育新机制[EB/OL]. (2018-03-06). http://ics.caas.cn/xwdt/kyjz/125729.htm.
[50] Liu X Q, Yang W Z, Mu B N, et al. Engineering of "Purple Embryo Maize" with a multigene expression system derived from a bidirectional promoter and self-cleaving 2A peptides[J]. Plant Biotechnology Journal, 2018, 16:1107-1109. doi:10.1111/pbi.12883.
[51] 作科所推动玉米单倍体诱导技术再升级[EB/OL].(2018-07-19). http://ics.caas.cn/xwdt/kyjz/142083.htm.
[52] Wang X J, Zhang X, Yang J T, et al. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes[J]. The Plant Journal, 2018, 93(6). doi:10.1111/tpj.13825.
[53] Shen Y T, Liu J, Geng H Y, et al. De novo assembly of a Chinese soybean genome[J]. Science China Life Sciences, 2018, 61(8):871-884. doi:10.1007/s11427-018-9360-0.
[54] Zhang D J, Sun L J, Li S, et al. Elevation of soybean seed oil content through selection for seed coat shininess[J]. Nature Plants, 2018, 4:30-35.
[55] Zhang K X, Logacheva M D, Meng Y, et al. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum.[J]. Journal of Experimental Botany, 2018, 69(8):1955-1966. doi:10.1093/jxb/ery032.
[56] Ye M W, Peng Z, Tang D E, et al. Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nature Plants, 2018, 4:651-654. doi:10.1038/s41477-018-0218-6.
[57] 我国油菜基础研究与应用跨入世界第一方阵[EB/OL]. (2018-09-29). http://www.caas.cn/xwzx/kyjz/294032.html.
[58] 棉花所系统总结棉花基因组测序成果及其应用[EB/OL]. (2018-01-30). http://www.caas.cn/xwzx/kyjz/288187.html.
[59] Wang M J, Wang P C, Lin M, et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton[J]. Nature Plants, 2018, 4:90-97. doi:10.1038/s41477-017-0096-3.
[60] Huang H, Yao Q Y, Xia E H, et al. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor[J]. Journal of Agricultural and Food Chemistry, 2018, 66(37):9828-98382. doi:10.1021/acs.jafc.8b01995.
[61] Wang Y C, Hao X Y, Lu Q H, et al. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose[J]. Horticulture Research, 2018, 5(1):18. doi:10.1038/s41438-018-0025-2.
[62] 烟草所解析果胶质多糖脱甲酯化的转录调控机制[EB/OL]. (2018-02-11). http://www.caas.cn/xwzx/kyjz/288320.html.
[63] Paul F S, Amanda P C, Helen W L, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science, 2019, 363:6422. doi:10.1126/science.aat9077.
[64] 蜜蜂所解析中华蜜蜂基因组和转录组[EB/OL].(2018-02-02). http://www.caas.cn/xwzx/kyjz/288245.html.
[65] Diao Q Y, Hou C S. Does nonreproductive swarming adapt to pathogens[J]. Plos Pathogens, 2018, 14(1). doi:10.1371/journal.ppat.1006742.
[66] Liu Y J, Zhao X M, Huang J X, et al. An. Structural insights into the preferential binding of PGRP-SAS from bumblebees and honeybees to Dap-type peptidoglycans rather than Lystype peptidoglycans[J]. The Journal of Immunology, 2018, doi:10.4049/jimmunol.1800439.
[67] 家蚕新品种"华康3号"通过审定[EB/OL]. (2018-03-19). http://www.caas.cn/xwzx/kyjz/288522.html.
[68] 蚕业所华康系列家蚕新品种全国年推广量突破140万张[EB/OL]. (2019-01-02). http://www.caas.cn/xwzx/kyjz/295036. html.
[69] 我国蚕业科学家开展合作研究揭示家蚕驯化和改良历史[EB/OL]. (2018-07-11). http://www.caas.cn/xwzx/kyjz/290197. html.
[70] Hu H, Ni J, Cai D Q, et al. A palgorskite-based nanocomposite effectively reducing the incidence of powdery mildew[J]. Applied Clay Science, 2018, 166:113-122. doi:10.1016/j. clay.2018.09.017.
[71] Huang Q L, Li L, Zheng M H, et al. The Tryptophan decarboxylase 1 gene from Aegilops variabilis No.1 regulate the resistance against cereal cyst nematode by altering the downstream secondary metabolite contents rather than auxin synthesis[J]. Frontiers in Plant Science, 2018, 9:1297. doi:10.3389/fpls.2018.01297.
[72] Sun Y W, Sparks C, Jones H, et al. Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants[J]. Plant Biotechnology Journal, 2018. doi:10.1111/pbi.13067.
[73] Zhou X G, Liao H C, Chern M S, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. PNAS, 2018, 115(12):3174-3179. doi:10.1073/pnas.1705927115.
[74] Huo Y, Yu Y L, Chen L Y, et al. Insect tissue-specific vitellogenin facilitates transmission of plant virus[J]. PLoS Pathogens, 2018, 14(2):e1006909.
[75] Qin J, Zhou X G, Sun L F, et al. The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence[J]. New Phytologist, 2018, 220:219-231. doi:10.1111/nph.15287.
[76] Lu H P, Luo T, Fu H W, et al. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis[J]. Nature Plants, 2018, 4:338-344. doi:10.1038/s41477-018-0152-7.
[77] Guo J P, Xu C X, Wu D, et al. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice[J]. Nature Genetics, 2018, 50:297-306. doi:10.1038/s41588-018-0039-6.
[78] Mei Y Z, Yang X L, Huang C J, et al. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη-mediated phosphorylation in Nicotiana benthamiana[J]. PLoS Pathogens, 2018, 14(1):e1006789. doi:10.1371/journal.ppat.1006-789.
[79] 植保所专家发现苹果花叶新病毒[EB/OL].(2018-08-01). http://www.caas.cn/xwzx/kyjz/293577.html.
[80] Zhang M C, Zhao S G, Wang S S, et al. D-Glucose and amino acid deficiency inhibits casein synthesis through JAK2/STAT5 and AMPK/mTOR signaling pathways in mammary epithelial cells of dairy cows[J]. Journal of Dairy Science, 2018, 101:1737-1746. doi:10.3168/jds.2017-12926.
[81] Miao X Y, Luo Q M, Zhao H J, et al. An integrated analysis of miRNAs and methylated genes encoding mRNAs and incRNAs in sheep breeds with different fecundity[J]. Frontiers in Physiology, 2018, 8:1049. doi:10.3389/fphys.2017.01049.
[82] Pan Z Y, Li S D, Liu Q Y, et al. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization[J]. Giga Science, 2018, 7(4):1-15. doi:10.1093/gigascience/giy019.
[83] Zhang L, Wu W D, Lee Y K, et al. Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract[J]. Frontiers in Microbiology, 2018, 9:48. doi:10.3389/fmicb.2018.00048.
[84] Wang J L, Wang Z L, Liu R Q, et al. Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus[J]. PLoS Pathogens, 2018, 14(7):e1007189. doi:10.1371/journal.ppat.1007189.
[85] 上海兽医所首次阐明坦布苏病毒不依赖蚊媒直接在动物间传播的分子基础[EB/OL].(2018-08-27). http://www.caas.cn/xwzx/kyjz/293728.html.
[86] Shi S, Wu S, Shen Y, et al. Iron oxide nanozyme suppresses intracellular Salmonella Enteritidis growth and alleviates infection in vivo[J]. Theranostics, 2018, 8(22):6149-6162. doi:10.7150/thno.29303.
[87] 我科学家进一步揭示乙脑病毒组装机制[EB/OL]. (2018-04-08). http://www.caas.cn/xwzx/kyjz/288681.html.
[88] 上海兽医所发现决定乙脑病毒毒力位点[EB/OL]. (2018-09-30). http://www.caas.cn/xwzx/kyjz/294048.html.
[89] Curtis A D, Joshua J T, Michelle T, et al. Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405):916-919. doi:10.1126/science.aat3466.
[90] Wang Z B, Chen J, Mao S C, et al. Comparison of greenhouse gas emissions of chemical fertilizer types in China's crop production[J]. Journal of Cleaner Production, 2017, 141:1267-1274. doi:10.1016/j.jclepro.2016.09.120.
[91] Jiang Y, Qian H Y, Wang L, et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies[J]. Global Change Biology, 2018, doi:10.1111/gcb.14529.
[92] 两款甘蓝收获机首次下地试验取得成功[EB/OL]. (2018-07-23). http://www.caas.cn/xwzx/kyjz/293510.html.
[93] 农机化所技术成果入选农业农村部十项重大引领性农业技术[EB/OL]. (2018-07-24). http://www.caas.cn/xwzx/kyjz/293522.html.
[94] 农机化所食用豆收获机具填补国内空白[EB/OL]. (2018-10-19). http://www.caas.net.cn/xwzx/kyjz/294137.html
[95] 全球首批无土栽培香蕉在荷收割,探索应对"香蕉危机"新路径[EB/OL]. (2018-12-27). http://www.sheshiyuanyi.com/news-id-1719.html.