专题:纳米生物医学

磁纳米分子影像探针研究热点与挑战

  • 楚成超 ,
  • 刘刚
展开
  • 厦门大学, 公共卫生学院分子影像暨转化医学研究中心, 厦门 361102
楚成超,博士后,研究方向为自组装纳米药物,电子信箱:chuchengchao0225@163.com

收稿日期: 2018-08-13

  修回日期: 2018-09-21

  网络出版日期: 2018-12-14

基金资助

科技部国家重点研发计划(2017YFA0205201);国家自然科学基金"海峡联合基金"重点项目(U1705281,U1505221)

Applications and challenge of magnetic resonance imaging probes

  • CHU Chengchao ,
  • LIU Gang
Expand
  • Center for Molecular Image and Translational Medicine, Xiamen University, Xiamen 361102, China

Received date: 2018-08-13

  Revised date: 2018-09-21

  Online published: 2018-12-14

摘要

近年来,磁纳米材料在分子影像领域的应用得到科研人员的广泛关注。常用的磁性纳米探针是超顺磁性氧化铁颗粒(SPION),它具有较好的水质子横向弛豫时间(T2)弥散加权核磁共振成像造影剂的性能。通过对SPION制备及表面修饰进行改进,使纳米颗粒具有磁共振造影功能和干细胞标记、药物/基因递送的功能。综述了SPION兼具影像探针和磁共振成像可视化治疗方面的功能。虽然已有多种磁纳米材料进入临床研究,但结合当前研究瓶颈以及纳米药物制备方法的发展,制备造影效果较好、药物生物相容性较高、具有靶向性及临床转换潜力较强的SPION是新一代磁纳米探针研究亟需解决的问题。

本文引用格式

楚成超 , 刘刚 . 磁纳米分子影像探针研究热点与挑战[J]. 科技导报, 2018 , 36(22) : 87 -95 . DOI: 10.3981/j.issn.1000-7857.2018.22.007

Abstract

In recent years, apllications of magnetic nanomaterials in molecular imaging have attracted much attention. The superparamagnetic nanoparticle is the most popular magnetic nanoparticle due to its good T2-weighted magnetic resonance imaging (MRI) contrast agent property. With the improvement of preparation and surface modification method, the superparamagnetic iron oxide particles (SPION) has been applied to imaging contrast, stem cell labeling and drug/gene delivery. This article reviews the combined applications of SPION in imaging contrast and MRI guided treatment. It also points out that many kinds of magnetic nanomaterials used for biomedical applications have low imaging contrast and specificity in vivo and have negative effecton living organism, which hinder the clinical application of SPION. Combined with the current public concerns and development of nanomedicine preparation methods, the preparation of SPION with good MRI contrast effect, high biocompatibility, disease area targeting and clinical conversion potential is a challenge to deal with in the new generation of magnetic nano-probes.

参考文献

[1] Liu J N, Bu W B, Shi J L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chemical Reviews, 2017, 117(9):6160-6224.
[2] England C G, Hernandez R, Eddine S B Z, et al. Molecular Imaging of pancreatic cancer with antibodies[J]. Molecular Pharmaceutics, 2016, 13(1):8-24.
[3] Prodi L, Rampazzo E, Rastrelli F, et al. Imaging agents based on lanthanide doped nanoparticles[J]. Chemical Society Review, 2015, 44(14):4922-4952.
[4] Yu E Y, Bishop M, Zheng B, et al. Magnetic particle imaging:A novel in vivo imaging platform for cancer detection[J]. Nano Letters, 2017, 17(3):1648-1654.
[5] Terreno E, Castelli D D, Viale A, et al. Challenges for molecular magnetic resonance imaging[J]. Chemical Reviews, 2010, 110(5):3019-3042.
[6] Cai W, Gao H Y, Chu C C, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imagingguided cancer therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(3):2040-2051.
[7] Prantner A M, Yin C, Kamat K, et al. Molecular imaging of mesothelin-expressing ovarian cancer with a human and mouse cross-reactive nanobody[J]. Molecular Pharmaceutics, 2018, 15(4):1403-1411.
[8] Bhatnagar S, Verma K D, Hu Y, et al. Oral administration and detection of a near-infrared molecular imaging agent in an orthotopic mouse model for breast cancer screening[J]. Molecular Pharmaceutics, 2018, 15(5):1746-1754.
[9] Pati M L, Fanizza E, Hager S, et al. Quantum dot based luminescent nanoprobes for Sigma-2 receptor imaging[J]. Molecular Pharmaceutics, 2018, 15(2):458-471.
[10] Kunjachan S, Ehling J, Storm G, et al. Noninvasive imaging of nanomedicines and nanotheranostics:Principles, progress, and prospects[J]. Chemical Reviews, 2015, 115(19):10907-10937.
[11] He S S, Li C, Zhang Q F, et al. Tailoring platinum(IV) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine[J]. ACS Nano, 2018, 12(7):7272-7281.
[12] Sheng Z H, Hu D H, Zheng M B, et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy[J]. ACS Nano, 2014, 8(12):12310-12322.
[13] Yu L X, Dong A J, Guo R W, et al. DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect[J]. ACS Biomaterials Science & Engineering, 2018, 4(7):2424-2434.
[14] Fan W P, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22):13566-13638.
[15] Alivisatos P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004, 22:47-52.
[16] He C, Jiang S, Jin H, et al. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity[J]. Biomaterials, 2016, 83:102-114.
[17] Jana N R, Chen Y, Peng X. Size and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach[J]. Chemistry of Materials, 2004, 16(20):3931-3935.
[18] Hao J J, Chen H L, Ren C L, et al. Synthesis of superparmagnetic Fe3O4 nanocrystals in reverse microemulsion at room temperature[J]. Materials Research Innovations, 2010, 14:324-326.
[19] Rockenberger J, Scher E C, Alivisatos A P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J]. Journal of the American Chemical Society, 1999, 121(49):11595-11596.
[20] Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J]. Journal of the American Chemical Society, 2001, 123(51):12798-12801.
[21] Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy[J]. Chemical Reviews, 2015, 115(19):10637-10689.
[22] Huang K C, Ehrman S H. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds[J]. Langmuir, 2007, 23(3):1419-1426.
[23] Huang, Wang L, Lin R, et al. Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4632-4639.
[24] Li Z, Chen H, Bao H B, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals[J]. Chemistry of Materials, 2004, 16(8):1391-1393.
[25] Zhao N, Gao M. Magnetic janus particles prepared by a flame synthetic approach:Synthesis, characterizations and properties[J]. Advanced Materials, 2009, 21(2):184-187.
[26] Jia Q, Zeng J, Qiao R, et al. Gelification:An effective measure for achieving differently sized biocompatible Fe3O4 nanocrystals through a single preparation recipe[J]. Journal of the American Chemical Society, 2011, 133(48):19512-19523.
[27] Liu G, Gao J H, Ai H, et al. Applications and potential toxicity of magnetic iron oxide nanoparticles[J]. Small, 2012, 9(9/10):1533-1545.
[28] Liu J, Wang L Q, Cao J B, et al. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles[J]. Nanoscale, 2014, 6(15):9025-9033.
[29] Liu G, Wang Z Y, Lu J, et al. Low molecular weight alkylpolycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging[J]. Biomaterials, 2011, 32(2):528-537.
[30] Wang L Y, Huang J, Chen H B, et al. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J]. ACS Nano, 2017, 11(5):4582-4592.
[31] Lin S Y, Huang R Y, Liao W C, et al. Multifunctional PEGylated albumin/IR780/iron oxide nanocomplexes for cancer photothermal therapy and MR imaging[J]. Nanotheranostics, 2018, 2(2):106-116.
[32] Li D L, Tan J E, Tian Y, et al. Multifunctional superparamagnetic nanoparticles conjugated with fluorescein-labeled designed ankyrin repeat protein as an efficient HER2-targeted probe in breast cancer[J]. Biomaterials, 2017, 147:86-98.
[33] Lin L S, Cong Z X, Cao J B, et al. Multifunctional Fe3O4@Polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J]. ACS Nano, 2014, 8(4):3876-3883.
[34] Wang J Q, Liu H, Liu Y, et al. Eumelanin-Fe3O4 hybrid nanoparticles for enhanced MR/PA imaging-assisted local photothermolysis[J]. Biomaterials Science, 2018, 6(3):586-595.
[35] Liu H, Chen X, Xue W, et al. Recombinant epidermal growth factor-like domain-1 from coagulation factor VⅡ functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging[J]. International Journal of Nanomedicine, 2016, 11:5099-5108.
[36] Zhou Z, Tian R, Wang Z Y, et al. Artificial local magnetic field inhomogeneity enhances T2 relaxivity[J]. Nature Communications, 2017, 8:15468.
[37] Zhao Z, Zhou Z, Bao J, et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging[J]. Nature Communications, 2013, 4:2266.
[38] Ma T, Hou Y, Zeng J, et al. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo[J]. Journal of the American Chemical Society, 2018, 140(1):211-218.
[39] Guthi J S, Yang S G, Huang G, et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells[J]. Molecular Pharmaceutics, 2010, 7(1):32-40.
[40] Fan C H, Cheng Y H, Ting C Y, et al. Ultrasound/Magnetic targeting with SPIO-DOX-microbubble complex for imageguided drug delivery in brain tumors[J]. Theranostics, 2016, 6(10):1542-1556.
[41] Yang C X, Lin G, Zhu C Q, et al. Metalla-aromatic loaded magnetic nanoparticles for MRI/photoacoustic imaging-guided cancer phototherapy[J]. Journal of Materials Chemistry B, 2018, 6(17):2528-2535.
[42] Lin G, Zhang Y, Zhu C Q, et al. Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy[J]. Biomaterials, 2018, 176:60-70.
[43] Liu G, Xie J, Zhang F, et al. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery[J]. Small, 2011, 7(19):2742-2749.
[44] Huang R Y, Chiang P H, Hsiao W C, et al. Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells[J]. Langmuir, 2015, 31(23):6523-6531.
[45] Chen S Z, Chen S Y, Zeng Y, et al. Size-dependent SPIONs dictate IL-1β release from mouse bone marrow-derived macrophages[J]. Journal of Applied Toxicology, 2018, 38(7):978-986.
文章导航

/