[1] In vitro diagnostics[EB/OL].[2018-09-20]. https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/default.htm.
[2] Directive 98/79/CE on in vitro diagnostic medical devices[EB/OL].[2018-09-20]. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:331:0001:0037:EN:PDF.
[3] Peeling R W, Mabey D. Point-of-care tests for diagnosing infections in the developing world[J]. Clinical Microbiology and Infection, 2010, 16(8):1062-1069.
[4] Pulido M R, García-Quintanilla M, Martín-Peña R, et al. Progress on the development of rapid methods for antimicrobial susceptibility testing[J]. Journal of Antimicrobial Chemotherapy, 2013, 68(12):2710-2717.
[5] Sia S K, Linder V, Parviz B A, et al. An integrated approach to a portable and low-cost immunoassay for resource-poor settings[J]. Angewandte Chemie International Edition, 2004, 43:498-502.
[6] Posthuma-Trumpie G A, Korf J, Van Amerongen A. Lateral flow (immuno) assay:Its strengths, weaknesses, opportunities and threats[J]. Analytical and Bioanalytical Chemistry, 2008, 393(2):569-582.
[7] Niemz A, Ferguson T M, Boyle D S. Point-of-care nucleic acid testing for infectious diseases[J]. Trends in Biotechnology, 2011, 29(5):240-250.
[8] Sharma S, Zapatero-Rodr J, Estrela P, et al. Point-of-Care diagnostics in low resource settings:Present status and future role of microfluidics[J]. Biosensors, 2015, 5(3):577-601.
[9] Balogh L P. Why do we have so many definitions for nanoscience and nanotechnology[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2010, 6(3):397-398.
[10] Kim B Y S, Rutka J T, Chan W C W. Nanomedicine[J]. The New England Journal of Medicine 2010, 363(25):2434-2443.
[11] Link S, El-Sayed M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. International Reviews in Physical Chemistry, 2000, 19(3):409-453.
[12] Agasti S S, Rana S, Park M H, et al. Nanoparticles for detection and diagnosis[J]. Advanced Drug Delivery Reviews, 2010, 62(3):316-328.
[13] Leng Y, Sun K, Chen X, et al. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection[J]. Chemical Society Reviews, 2015, 44(15):5552-5595.
[14] Zhou W, Gao X, Liu D, et al. Gold nanoparticles for in vitro diagnostics[J]. Chemical Reviews 2015, 115(19):10575-10636.
[15] Kim J, Mohamed M A A, Zagorovsky K, et al. State of diagnosing infectious pathogens using colloidal nanomaterials[J]. Biomaterials, 2017, 146:97-114.
[16] Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals[J]. Small, 2009, 5(2):154-168.
[17] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
[18] Kairdolf B A, Smith A M, Stokes T H, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annual Review of Analytical Chemistry, 2013, 6(1):143-162.
[19] Alivisatos A P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004, 22(1):47-52
[20] Jin Z, Hildebrandt N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging[J]. Trends Biotechnology. 2012, 30(7):394-403.
[21] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3):668-677.
[22] Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications[J]. Chemical Reviews, 2007, 107(11):4797-4862.
[23] Gao J, Bender C M, Murphy C J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution[J]. Langmuir, 2003, 19(21):9065-9070.
[24] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(5329):1078-1081.
[25] Jain P K, Huang X, El-Sayed I H, et al. Noble metals on the nanoscale:Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41(12):1578-1586.
[26] Reddy L H, Arias J L, Nicolas J, et al. Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chemical Reviews, 2012, 112(11):5818-5878.
[27] Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology[J]. Radiology & Oncology, 2011, 45(1):1-16.
[28] Zou Z, Du D, Wang J, et al. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos[J]. Analytical Chemistry, 2010, 82(12):5125-5133.
[29] Peng C, Li Z, Zhu Y, et al. Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes[J]. Biosensors & Bioelectronics, 2009, 24(12):3657-3662.
[30] Park J, Park Y, Kim S. Signal amplification via biological self-assembly of surface-engineered quantum dots for multiplexed subattomolar immunoassays and apoptosis imaging[J]. ACS Nano, 2013, 7(10):9416-9427.
[31] Chen Z H, Liang R L, Guo X X, et al. Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles[J]. Biosensors and Bioelectronics, 2017, 91:60-65.
[32] Kim D, Kwon H J, Shin K, et al. Multiplexible wash-free immunoassay using colloidal assemblies of magnetic and photoluminescent nanoparticles[J]. ACS Nano, 2017, 11(8):8448-8455.
[33] Lu S, Zhang D S Z, Wei D, et al. Three-dimensional barcodes with ultrahigh encoding capacities:A flexible, accurate, and reproducible encoding strategy for suspension arrays[J]. Chemistry of Materials, 2017, 29(24):10398-10408.
[34] Zavoiura O, Resch-Genger U, Seitz O. Quantum dot-PNA conjugates for target-catalyzed RNA detection[J]. Bioconjugate Chemistry, 2018, 29(5):1690-1702.
[35] Lu B R, He Q H, He Y H, et al. Dual-channel-coded microbeads for multiplexed detection of biomolecules using assembling of quantum dots and element coding nanoparticles[J]. Analytica Chimica Acta, 2018, 1024:153-160.
[36] Wu R L, Wang T Y, Wu M, et al. Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay[J]. Chemical Engineering Journal, 2018, 348:447-454.
[37] Zhang C Y, Hu J. Single quantum dot-based nanosensor for multiple DNA detection[J]. Analytical Chemistry, 2010, 82(5):1921-1927.
[38] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Material, 2003, 2(9):630-638.
[39] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnology, 2001, 19(7):631-635.
[40] Giri S, Sykes E A, Jennings T L, et al. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes[J]. ACS Nano, 2011, 5(3):1580-1587.
[41] Sharon E, Freeman R, Willner I. CdSe/ZnS quantum dotsgquadruplex/hemin hybrids as optical DNA sensors and aptasensors[J]. Analytical Chemistry, 2010, 82(17):7073-7077.
[42] Chi C W, Lao Y H, Li Y S, et al. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter:Application to label-free thrombin detection[J]. Biosensors & Bioelectronics, 2011, 26(7):3346-3352.
[43] Chen K, Chou L Y T, Song F, et al. Fabrication of metal nanoshell quantum-dot barcodes for biomolecular detection[J]. Nano Today, 2013, 8(3):228-234.
[44] Dong J Y, Salem D P, Sun J H, et al. Analysis of multiplexed nanosensor arrays based on near-infrared fluorescent singlewalled carbon nanotubes[J]. ACS Nano, 2018, 12(4):3769-3779.
[45] Pei X J, Yin H Y, Lai T C, et al. Multiplexed detection of attomoles of nucleic acids using fluorescent nanoparticle counting platform[J]. Analytical Chemistry, 2018, 90(2):1376-1383.
[46] Wu S, Li C, Shi H, et al. Design of metal-organic frameworkbased nanoprobes for multicolor detection of DNA targets with improved sensitivity[J]. Analytical Chemistry, 2018, 90(16):9929-9935.
[47] Fang C C, Chou C C, Yang Y Q, et al. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip[J]. Analytical Chemistry, 2018, 90(3):2134-2140.
[48] Yang M Y, Zhang Y, Cui M H, et al. A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles[J]. Nanoscale, 2018, 10(33):15865-15874.
[49] Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:Radiative and nonradiative effects[J]. Physical Review Letters, 2002, 89(20):203002.
[50] Maxwell D J, Taylor J R, Nie S. Self-Assembled nanoparticle probes for recognition and detection of biomolecules[J]. Journal of the American Chemical Society, 2002, 124(32):9606-9612.
[51] Samanta A, Zhou Y, Zou S, et al. Fluorescence quenching of quantum dots by gold nanoparticles:A potential long range spectroscopic ruler[J]. Nano Letters, 2014, 14(9):5052-5057.
[52] Xue C, Xue Y, Dai L, et al. Size-and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye[J]. Advanced Optical Materials, 2013, 1(8):581-587.
[53] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J]. Nature Biotechnology, 2001, 19(4):365-370.
[54] Song S, Liang Z, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis[J]. Angewandte Chemie International Edition, 2009, 48(46):8670-8674.
[55] Yeh H Y, Yates M V, Mulchandani A, et al. Molecular beaconequantum dote Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells[J]. Chemical Communications, 2010, 46(22):3914-3916.
[56] Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus a hemagglutinin antigen[J]. Sensors, 2015, 15(4):8852-8865.
[57] He S, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Advanced Functional Materials, 2010, 20(3):453-459.
[58] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie International Edition, 2009, 121(26):4879-4881.
[59] Ni J, Lipert R J, Dawson G B, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids[J]. Analytical Chemistry, 1999, 71(21):4903-4908.
[60] Sun L, Yu C, Irudayaraj J. Raman multiplexers for alternative gene splicing[J]. Analytical Chemistry, 2008, 80(9):3342e3349.
[61] Hu F H, Zeng C, Long R, et al. Supermultiplexed optical imaging and barcoding with engineered polyynes[J]. Nature Methods, 2018, 15(3):194-200.
[62] Huh Y S, Chung A J, Erickson D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis[J]. Microfluidics & Nanofluidics 2009, 6(3):285-297.
[63] Etchegoin P G, Le E C. A perspective on single molecule SERS:Current status and future challenges[J]. Physical Chemistry Chemical Physics, 2008, 10(40):6079-6089.
[64] Kneipp K, Kneipp H, Kartha V B, et al. Detection and identification of a single DNA base molecule using surfaceenhanced Raman scattering (SERS)[J]. Physical Review E, 1998, 57(6):R6281-R6284.
[65] Matteini P, Cottat M, Tavanti F, et al. Site-selective surfaceenhanced Raman detection of proteins[J]. ACS Nano, 2017, 11:918-926.
[66] Liu B, Ni H B, Zhang D, et al. Ultrasensitive detection of protein with wide linear dynamic range based on core-shell SERS nanotags and photonic crystal beads[J]. ACS Sensors, 2017, 2(7):1035-1043.
[67] Guo R Y, Yin F F, Sun Y D, et al. Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors[J]. ACS Applied Materials & Interfaces, 2018, 10(30):25770-25778.
[68] Li J R, Wang J, Grewal Y S, et al. Multiplexed SERS detection of soluble cancer protein biomarkers with gold-silver alloy nanoboxes and nanoyeast single-chain variable fragments[J]. Analytical Chemistry, 2018, 90:10377-10384.
[69] Huh Y S, Chung A J, Cordovez B, et al. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells[J]. Lab on a Chip, 2009, 9(3):433-439.
[70] Wabuyele M B, Vo-Dinh T. Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes[J]. Analytical Chemistry, 2005, 77(23):7810-7815.
[71] Xu S, Ji X, Xu W, et al. Immunoassay using probe labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering[J]. Analyst, 2004, 129(1):63-66.
[72] Kong K, Kendall C, Stone N, et al. Raman spectroscopy for medical diagnostics d from in-vitro biofluid assays to in-vivo cancer detection[J]. Advanced Drug Delivery Reviews, 2015, 89:121-134.
[73] Gracie K, Correa E, Mabbott S, et al. Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS[J]. Chemical Science, 2014, 5(3):1030-1040.
[74] Neng J, Harpster M H, Wilson W C, et al. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles[J]. Biosensors & Bioelectronics, 2013, 41(6):316-321.
[75] Breuzard G, Angiboust J F, Jeannesson P, et al. Surface enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells[J]. Biochemical and Biophysical Research Communications, 2004, 320(2):615-621.
[76] Gao Y, Lam A W Y, Chan W C W. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device[J]. ACS Applied Materials & Interfaces, 2013, 5(8):2853-2860.
[77] Yuan C, Deng Y T, Li X M, et al. Synthesis of monodisperse plasmonic magnetic microbeads and their application in ultrasensitive detection of biomolecules[J]. Analytical Chemistry, 2018, 90(13):8178-8187.
[78] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity[J]. Journal of the American Chemical Society, 2004, 126(19):5932-5933.
[79] Chung H J, Castro C M, Im H, et al. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria[J]. Nature Nanotechnology, 2013, 8(5):369-375.
[80] Haun J B, Castro C M, Wang R, et al. Micro-NMR for rapid molecular analysis of human tumor samples[J]. Science Translational Medicine, 2011, 3(71):71ra16.
[81] Lee H, Sun E, Ham D, et al. Chip-NMR biosensor for detection and molecular analysis of cells[J]. Nature Medicine 2008, 14(8):869-874.
[82] Koh I, Hong R, Weissleder R, et al. Sensitive NMR sensors detect antibodies to influenza[J]. Angewandte Chemie International Edition, 2008, 120(22):4187-4189.
[83] Perez J M, Josephson L, O'Loughlin T, et al. Magnetic relaxation switches capable of sensing molecular interactions[J]. Nature Biotechnology, 2002, 20(8):816-820.
[84] Lee H, Yoon T J, Figueiredo J L, et al. Rapid detection and profiling of cancer cells in fine-needle aspirates[J]. PNAS, 2009, 106(30):12459-12464.
[85] Ronkainen N J, Halsall H B, Heineman W R. Electrochemical biosensors[J]. Chemical Society Reviews, 2010, 39(5):1747-1763.
[86] Bauer C G, Eremenko A V, Ehrentreich-Forster E, et al. Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid[J]. Analytical Chemistry, 1996, 68(15):2453-2458.
[87] Fu Y, Wang N X, Yang A N, et al. Highly sensitive detection of protein biomarkers with organic electrochemical transistors[J]. Advanced Materials, 2017, 29(41):1703787.
[88] Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses[J]. PNAS, 2004, 101(39):14017-14022.
[89] Kerman K, Saito M, Yamamura S, et al. Nanomaterial based electrochemical biosensors formedical applications[J]. Trends in Analytical Chemistry, 2008, 27(7):585-592.
[90] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics[J]. Chemical Reviews, 2005, 105(4):1547-1562.
[91] Chen R J, Bangsaruntip S, Drouvalakis K A, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors[J]. PNAS, 2003, 100(9):4984-4989.
[92] Wang Y, Ye Z, Ying Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria[J]. Sensors, 2012, 12(3):3449-3471.
[93] Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes[J]. Science, 2002, 295(5559):1503-1506.
[94] Idegami K, Chikae M, Kerman K, et al. Gold nanoparticlebased redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone[J]. Electroanalysis, 2008, 20(1):14-21.
[95] Liu G, Lee T M H, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms[J]. Journal of the American Chemical Society, 2005, 127(1):38-39.
[96] Pires N, Dong T, Hanke U, et al. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications[J]. Sensors, 2014, 14(8):15458-15479.
[97] Reynolds R A, Mirkin C A, Letsinger R L. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides[J]. Journal of the American Chemical Society, 2016, 122(15):3795-3796.
[98] Vilela D, González M C, Escarpa A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation:Chemical creativity behind the assay. A review[J]. Analytica Chimica Acta, 2012, 751(21):24-43.
[99] Kim J H, Park J E, Lin M H, et al. Sensitive, quantitative naked-eye biodetection with polyhedral Cu nanoshells[J]. Advanced Materials, 2017, 29(37):1702945.
[100] Verma M S, Rogowski J L, Jones L, et al. Colorimetric biosensing of pathogens using gold nanoparticles[J]. Biotechnology Advances, 2015, 33(6):666-680.
[101] Chan W S, Tang B S F, Boost M V, et al. Detection of methicillin-resistant Staphylococcus aureus using a gold nanoparticle-based colourimetric polymerase chain reaction assay[J]. Biosensors & Bioelectronics, 2013, 53(6):105-111.
[102] Jung C, Chung J W, Kim U O, et al. Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay[J]. Biosensors & Bioelectronics, 2011, 26(5):1953-1958.
[103] Carter J R, Balaraman V, Kucharski C A, et al. A novel dengue virus detection method that couples DNA zyme and gold nanoparticle approaches[J]. Virology Journal, 2013, 10(1):1-15.
[104] Zagorovsky K, Chan W C W. A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens[J]. Angewandte Chemie International Edition, 2013, 52(11):3168-3171.
[105] Zhang S, Guo W, Wei J, et al. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4):3797-3805.
[106] Pelaz B, Alexiou C, Alvarez-Puebla R A, et al. Diverse applications of nanomedicine[J]. ACS Nano, 2017, 11(3):2313-2381.
[107] Raeesi V, Chou L Y T, Chan W C W. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures[J]. Advanced Materials, 2016, 28(38):8511-8518.
[108] Govorov A O, Richardson H H. Generating heat with metal nanoparticles[J]. Nano Today 2007, 2(1):30-38.
[109] Qin Z, Chan W C W, Boulware D R, et al. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast[J]. Angewandte Chemie International Edition, 2012, 51(18):4358-4361.
[110] Wang Y, Qin Z, Boulware D R, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays[J]. Analytical Chemistry, 2016, 88(23):11774-11782.
[111] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21):10869-10939.