[1] 李博, 陈花玲. 介电弹性材料驱动器的力电耦合机理及稳定性研究[J]. 机械工程学报, 2014(11):42-42. Li Bo, Chen Hualing. Electromechanical coupling and stability of dielectric elastomer actuator[J]. Chinese Journal of Mechanical Engineering, 2014(11):42-42.
[2] Romasanta L J, Lopez-Manchado M A, Verdejo R. Increasing the performance of dielectric elastomer actuators:A review from the materials perspective[J]. Progress in Polymer Science, 2015, 51:188-211.
[3] Liu Y, Liu L, Zhang Z, et al. Dielectric elastomer film actuators:Characterization, experiment and analysis[J]. Smart Materials & Structures, 2009, 18(9):95024-95010.
[4] Huang Z, Jin X, Ruan R, et al. Typical dielectric elastomer structures:Dynamics and application in structural vibration control[J]. Journal of Zhejiang University-Science A, 2016, 17(9):758-758.
[5] 王化明, 朱剑英, 叶克贝, 等. 介电弹性体线性驱动器研究[J]. 机械工程学报, 2009, 45(7):291-296. Wang Huaming, Zhu Jianying, Ye Kebei, et al. Research on linear dielectric elastomer actuator[J]. Chinese Journal of Mechanical Engineering, 2009, 45(7):291-296.
[6] 党智敏, 王海燕, 彭勃, 等. 高介电常数的聚合物基纳米复合电介质材料[J]. 中国电机工程学报, 2006, 26(15):100-104. Dang Zhiming, Wang Haiyan, Peng Bo, et al. Polymer-based nanocomposite dielectric materials with high dielectric constant[J]. Proceedings of the CSEE, 2006, 26(15):100-104.
[7] 钟林成, 王永泉, 陈花玲. 基于介电弹性软体材料的能量收集:现状、趋势与挑战[J]. 中国科学:技术科学, 2016, 46(10):987. Zhong Lincheng, Wang Yongquan, Chen Hualing. Energy harvesting based on soft material of dielectric elastomers:Status, trends and challenges[J]. Scientia Sinica Technologica, 2016, 46(10):987.
[8] 陈宝鸿, 周进雄. 离子导体驱动的介电弹性体软机器研究进展[J]. 固体力学学报, 2015, 36(6):481-492. Chen Baohong, Zhou Jinxiong. Dielectric elastomer based soft machines actuated by ionic conductors:Progress and perspectives[J]. Chinese Journal of Solid Mechanics, 2015, 36(6):481-492.
[9] 郝丽娜, 徐夙, 刘斌. 基于IPMC驱动器的小型遥控机器鱼的研制[J]. 东北大学学报(自然科学版), 2009, 30(6):773-776. Hao Lina, Xu Su, Liu Bin. A miniature fish-like robot with infrared remote receiver and IPMC actuator[J]. Journal of Northeast University(Natural Science), 2009, 30(6):773-776.
[10] 于敏, 丁海涛, 郭东杰, 等. 离子聚合物金属复合材料电致动模型研究[J]. 功能材料, 2011, 42(8):1436-1440. Yu Min, Ding Haitao, Guo Dongjie, et al. An electro-mechanical model of ionic polymer metal composites[J]. Journal of Functional Materials, 2011, 42(8):1436-1440.
[11] Teyssier J, Saenko S V, Marel D V D, et al. Photonic crystals cause active colour change in chameleons[J]. Nature Communications, 2015, 6:6368.
[12] 韩志武, 邬立岩, 邱兆美, 等. 紫斑环蝶鳞片的微结构及其结构色[J]. 科学通报, 2008(22):2692-2696. Han Zhiwu, Wu Liyan, Qiu Zhaomei, et al. Microstructure and stuctural color in thaumantis diores[J]. Chinese Science Bulletin, 2008(22):2692-2696.
[13] 王霞, 王自霞, 吕浩, 等. 光子学视角分析自然界中的生物结构色彩美[J]. 科学通报, 2010, 55(12):1077-1084. Wang Xia, Wang Zixia, Lü Hao, et al. Phontonic viewpoint for some iridescent natural organism[J] Chinese Science Bulletin, 2010, 55(12):1077-1084.
[14] Mäthger L M, Hanlon R T. Malleable skin coloration in cephalopods:Selective reflectance, transmission and absorbance of light by chromatophores and iridophores[J]. Cell & Tissue Research, 2007, 329(1):179-186.
[15] 韦友秀, 陈牧, 刘伟明, 等. 电致变色技术研究进展和应用[J]. 航空材料学报, 2016, 36(3):108-123. Wei Youxiu, Chen Mu, Liu Weiming, et al. Recent process and application of electrochromism[J] Journal of Aeronautical Materials, 2016, 36(3):108-123.
[16] Kuzmina O, Hassan N H, Patel L, et al. The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes[J]. Dalton Transactions, 2017, 46(36):12185-12200.
[17] Zhu M Q, Zhu L, Han J J, et al. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence[J]. Journal of the American Chemical Society, 2006, 128(13):4303-4309.
[18] 党智敏, 王岚, 王海燕. 新型智能材料:电活性聚合物的研究状况[J]. 功能材料, 2005, 36(7):981-987. Dang Zhimin, Wang Lan, Wang Haiyan. Novel smart materials:Progress in electroactive polymers[J]. Chinese Journal of Functional Materials, 2005, 36(7):981-987.
[19] Pelrine R, Kornbluh R, Joseph J, et al. High-field deformation of elastomeric dielectrics for actuators[J]. Materials Science & Engineering C, 2000, 11(2):89-100.
[20] Lee S G, Park H C, Pandita S D, et al. Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator[J]. International Journal of Control Automation & Systems, 2006, 4(6):748-755.
[21] Leang K K. Fused filament 3D printing of ionic polymer-metal composites for soft robotics[J]. Smart Materials & Structures, 2015, 24(12):125021.
[22] Must I, Kaasik F, Põldsalu I, et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials, 2015, 17(1):84-94.
[23] Rossiter J, Yap B, Conn A. Biomimetic chromatophores for camouflage and soft active surfaces[J]. Bioinspiration & Biomimetics, 2012, 7(3):036009.
[24] Rossiter J, Conn A, Cerruto A, et al. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores[C]//Electroactive Polymer Actuators and Devices. Bellingham WA:International Society for Optics and Photonics, 2014:905620.
[25] Hanley C A, Gun'Ko Y K, Frediani G, et al. Stretchable optical device with electrically tunable absorbance and fluorescence[J]. Smart Materials & Structures, 2014, 23(1):5009.
[26] Wang Q, Gossweiler G R, Craig S L, et al. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning[J]. Nature Communications, 2014, 5:4899.
[27] 马锡英. 光子晶体原理及应用[M]. 北京:科学出版社, 2010. Ma Xiying. Principle and application of photonic crystal[M]. Beijing:Science Press, 2010.
[28] Chan E P, Walish J J, Urbas A M, et al. Mechanochromic photonic gels[J]. Advanced Materials, 2013, 25(29):3934-3947.
[29] Haque M A, Kamita G, Kurokawa T, et al. Unidirectional alignment of lamellar bilayer in hydrogel:One-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color[J]. Advanced Materials, 2010, 22(45):5110-5114.
[30] Haque M A, Kurokawa T, Gong J P. Anisotropic hydrogel based on bilayers:Color, strength, toughness, and fatigue resistance[J]. Soft Matter, 2012, 8(31):8008-8016.
[31] Wei Z, Yang J H, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23):8114-8131.
[32] Walish J J, Kang Y, Mickiewicz R A, et al. Bioinspired electrochemically tunable block copolymer full color pixels[J]. Advanced Materials, 2010, 21(30):3078-3081.
[33] Nucara L, Greco F, Mattoli V. Electrically responsive photonic crystals:A review[J]. Journal of Materials Chemistry C, 2015, 3(33):8449-8467.
[34] Kubo S, Gu Z Z, Takahashi K, et al. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure[J]. Journal of the American Chemical Society, 2004, 126(26):8314-8319.
[35] Kuai S L, Bader G, Ashrit P V. Tunable electrochromic photonic crystals[J]. Applied Physics Letters, 2005, 86(22):967.
[36] Kubo S, Gu Z Z, Takahashi K, et al. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field[J]. Chemistry of Materials, 2005, 17(9):2298-2309.
[37] Yin T, Zhong D, Liu J, et al. Stretch tuning of the Debye ring for 2D photonic crystals on a dielectric elastomer membrane[J]. Soft Matter, 2018, 14(7):1120-1129.
[38] Chen B H, Bai Y Y, Xiang F, et al. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators[J]. Journal of Polymer Science Part B Polymer Physics, 2014, 52(16):1055-1060.
[39] Niu S C, Bo L, Ye J F, et al. Angle-dependent discoloration structures in wing scales of Morpho menelaus, butterfly[J]. Science China, 2016, 59(5):1-7.
[40] Giraldo M A, Yoshioka S, Liu C, et al. Coloration mechanisms and phylogeny of Morpho butterflies[J]. Journal of Experimental Biology, 2016, 219(24):3936-3944.
[41] 陈花玲, 罗斌, 朱子才, 等. 4D打印:智能材料与结构增材制造技术研究进展[J]. 西安交通大学学报, 2017, 8(51):1-12. Chen Hualing, Luo Bin, Zhu Zicai, et al. 4D Printing:Progress in additive manufacturing technology of smart materials and structure[J]. Journal of Xi'an Jiaotong University, 2017, 8(51):1-12.
[42] 李涤尘, 刘佳煜, 王延杰, 等. 4D打印-智能材料的增材制造技术[J]. 机电工程技术, 2014(5):1-9. Li Dichen, Liu Jiayu, Wang Yanjie, et al. 4D Printing-additive manufacturing technology of smart materials[J]. Mechanical & Electrical Engineering Technology, 2014(5):1-9.