综述

电活性聚合物驱动的仿生变色伪装技术研究进展

  • 李博 ,
  • 王延杰 ,
  • 赵鹏飞 ,
  • 刘磊 ,
  • 陈花玲
展开
  • 1. 西安交通大学机械工程学院, 陕西省智能机器人重点实验室, 西安 710049;
    2. 河海大学机电工程学院, 江苏省特种机器人技术重点实验室, 常州 213022;
    3. 浙江大学, 流体动力与机电系统国家重点实验室, 杭州 310027
李博,副教授,研究方向为电活性聚合物仿生,电子信箱:liboxjtu@xjtu.edu.cn

收稿日期: 2018-03-09

  修回日期: 2018-05-09

  网络出版日期: 2018-11-27

基金资助

国家自然科学基金项目(91748124,91648110);国防科工局基础科研项目(JCKY*****110C);流体动力与机电系统国家重点实验室开发课题(GZKF-201508);江苏省特种机器人技术重点实验室开放基金项目(2017B21114)

Research progress of electroactive polymer actuated biomimetic coloration in camouflage

  • LI Bo ,
  • WANG Yanjie ,
  • ZHAO Pengfei ,
  • LIU Lei ,
  • CHEN Hualing
Expand
  • 1. School of Mechanical Engineering, Xi'an Jiaotong University;Key Lab of Intelligent Robot of Shanxi Province, Xi'an 710049, China;
    2. College of Mechanical and Electrical Engineering, Hohai University;Key Laboratory of Special Robot Technology of Jiangsu Province, Changzhou 213022, China;
    3. State Key Laboratory of Fluid Power and Mechanic Systems, Zhejiang University, Hangzhou 310027, China

Received date: 2018-03-09

  Revised date: 2018-05-09

  Online published: 2018-11-27

摘要

电活性聚合物材料是一种具有电场响应变形的软体智能材料,其质地柔韧,变形过程与生物肌肉类似,被公认为是一种理想的人工肌肉材料。基于电活性聚合物的变色技术具有贴近生物本体特征和适用于复杂结构的应用优势,为新一代变色伪装技术的发展提供了新的方向。介绍了自然界生物的变色机理,比较了避役科生物的结构变色和头足纲生物的化学变色的区别;分析了现有仿生变色技术的现状,发现其中存在变色调控方式复杂、缺少变形适应性的特征;介绍了电活性聚合物电致变形的基本驱动机理,指出了这种类肌肉驱动变色方式存在的先进性和前沿性;比较了几种典型的电活性聚合物的变色技术及其特点,并归纳了现有研究中存在的挑战。该技术的实施有望推动新一代军事伪装装备发展,为具有环境共融特征的机器人提供应用技术支持。

本文引用格式

李博 , 王延杰 , 赵鹏飞 , 刘磊 , 陈花玲 . 电活性聚合物驱动的仿生变色伪装技术研究进展[J]. 科技导报, 2018 , 36(21) : 99 -108 . DOI: 10.3981/j.issn.1000-7857.2018.21.013

Abstract

The unique characteristic of biological coloration in nature provides inspiration for engineering. Electro-active polymer is a kind of soft smart material with electric field responsive deformation. It is flexible and its deformation process is similar to that of biological muscle, which is recognized as an ideal artificial muscle material. Therefore, the electrochromic technology based on electro-active polymers that has a biological characteristic close to living things is suitable for the application to complex structures, so as to provide a new direction for the development of next-generation camouflage technology. Firstly, this paper introduces the mechanism of color change in nature, stating the differences in chameleon and cephalopod. The limitations of the existing technology are summarized in terms of inconvenience in actuation and lack of flexibility. Then the paper introduces the mechanism of electrically induced deformation of electroactive polymer, analyzes the advances in electro-active polymer actuated color change, and compares the current technical characteristics. Moreover,the challenges in current research are pointed out as well. The application of this technique may promote the development of military camouflage which features the next generation of tri-co robot in environmental visual compatibility.

参考文献

[1] 李博, 陈花玲. 介电弹性材料驱动器的力电耦合机理及稳定性研究[J]. 机械工程学报, 2014(11):42-42. Li Bo, Chen Hualing. Electromechanical coupling and stability of dielectric elastomer actuator[J]. Chinese Journal of Mechanical Engineering, 2014(11):42-42.
[2] Romasanta L J, Lopez-Manchado M A, Verdejo R. Increasing the performance of dielectric elastomer actuators:A review from the materials perspective[J]. Progress in Polymer Science, 2015, 51:188-211.
[3] Liu Y, Liu L, Zhang Z, et al. Dielectric elastomer film actuators:Characterization, experiment and analysis[J]. Smart Materials & Structures, 2009, 18(9):95024-95010.
[4] Huang Z, Jin X, Ruan R, et al. Typical dielectric elastomer structures:Dynamics and application in structural vibration control[J]. Journal of Zhejiang University-Science A, 2016, 17(9):758-758.
[5] 王化明, 朱剑英, 叶克贝, 等. 介电弹性体线性驱动器研究[J]. 机械工程学报, 2009, 45(7):291-296. Wang Huaming, Zhu Jianying, Ye Kebei, et al. Research on linear dielectric elastomer actuator[J]. Chinese Journal of Mechanical Engineering, 2009, 45(7):291-296.
[6] 党智敏, 王海燕, 彭勃, 等. 高介电常数的聚合物基纳米复合电介质材料[J]. 中国电机工程学报, 2006, 26(15):100-104. Dang Zhiming, Wang Haiyan, Peng Bo, et al. Polymer-based nanocomposite dielectric materials with high dielectric constant[J]. Proceedings of the CSEE, 2006, 26(15):100-104.
[7] 钟林成, 王永泉, 陈花玲. 基于介电弹性软体材料的能量收集:现状、趋势与挑战[J]. 中国科学:技术科学, 2016, 46(10):987. Zhong Lincheng, Wang Yongquan, Chen Hualing. Energy harvesting based on soft material of dielectric elastomers:Status, trends and challenges[J]. Scientia Sinica Technologica, 2016, 46(10):987.
[8] 陈宝鸿, 周进雄. 离子导体驱动的介电弹性体软机器研究进展[J]. 固体力学学报, 2015, 36(6):481-492. Chen Baohong, Zhou Jinxiong. Dielectric elastomer based soft machines actuated by ionic conductors:Progress and perspectives[J]. Chinese Journal of Solid Mechanics, 2015, 36(6):481-492.
[9] 郝丽娜, 徐夙, 刘斌. 基于IPMC驱动器的小型遥控机器鱼的研制[J]. 东北大学学报(自然科学版), 2009, 30(6):773-776. Hao Lina, Xu Su, Liu Bin. A miniature fish-like robot with infrared remote receiver and IPMC actuator[J]. Journal of Northeast University(Natural Science), 2009, 30(6):773-776.
[10] 于敏, 丁海涛, 郭东杰, 等. 离子聚合物金属复合材料电致动模型研究[J]. 功能材料, 2011, 42(8):1436-1440. Yu Min, Ding Haitao, Guo Dongjie, et al. An electro-mechanical model of ionic polymer metal composites[J]. Journal of Functional Materials, 2011, 42(8):1436-1440.
[11] Teyssier J, Saenko S V, Marel D V D, et al. Photonic crystals cause active colour change in chameleons[J]. Nature Communications, 2015, 6:6368.
[12] 韩志武, 邬立岩, 邱兆美, 等. 紫斑环蝶鳞片的微结构及其结构色[J]. 科学通报, 2008(22):2692-2696. Han Zhiwu, Wu Liyan, Qiu Zhaomei, et al. Microstructure and stuctural color in thaumantis diores[J]. Chinese Science Bulletin, 2008(22):2692-2696.
[13] 王霞, 王自霞, 吕浩, 等. 光子学视角分析自然界中的生物结构色彩美[J]. 科学通报, 2010, 55(12):1077-1084. Wang Xia, Wang Zixia, Lü Hao, et al. Phontonic viewpoint for some iridescent natural organism[J] Chinese Science Bulletin, 2010, 55(12):1077-1084.
[14] Mäthger L M, Hanlon R T. Malleable skin coloration in cephalopods:Selective reflectance, transmission and absorbance of light by chromatophores and iridophores[J]. Cell & Tissue Research, 2007, 329(1):179-186.
[15] 韦友秀, 陈牧, 刘伟明, 等. 电致变色技术研究进展和应用[J]. 航空材料学报, 2016, 36(3):108-123. Wei Youxiu, Chen Mu, Liu Weiming, et al. Recent process and application of electrochromism[J] Journal of Aeronautical Materials, 2016, 36(3):108-123.
[16] Kuzmina O, Hassan N H, Patel L, et al. The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes[J]. Dalton Transactions, 2017, 46(36):12185-12200.
[17] Zhu M Q, Zhu L, Han J J, et al. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence[J]. Journal of the American Chemical Society, 2006, 128(13):4303-4309.
[18] 党智敏, 王岚, 王海燕. 新型智能材料:电活性聚合物的研究状况[J]. 功能材料, 2005, 36(7):981-987. Dang Zhimin, Wang Lan, Wang Haiyan. Novel smart materials:Progress in electroactive polymers[J]. Chinese Journal of Functional Materials, 2005, 36(7):981-987.
[19] Pelrine R, Kornbluh R, Joseph J, et al. High-field deformation of elastomeric dielectrics for actuators[J]. Materials Science & Engineering C, 2000, 11(2):89-100.
[20] Lee S G, Park H C, Pandita S D, et al. Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator[J]. International Journal of Control Automation & Systems, 2006, 4(6):748-755.
[21] Leang K K. Fused filament 3D printing of ionic polymer-metal composites for soft robotics[J]. Smart Materials & Structures, 2015, 24(12):125021.
[22] Must I, Kaasik F, Põldsalu I, et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials, 2015, 17(1):84-94.
[23] Rossiter J, Yap B, Conn A. Biomimetic chromatophores for camouflage and soft active surfaces[J]. Bioinspiration & Biomimetics, 2012, 7(3):036009.
[24] Rossiter J, Conn A, Cerruto A, et al. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores[C]//Electroactive Polymer Actuators and Devices. Bellingham WA:International Society for Optics and Photonics, 2014:905620.
[25] Hanley C A, Gun'Ko Y K, Frediani G, et al. Stretchable optical device with electrically tunable absorbance and fluorescence[J]. Smart Materials & Structures, 2014, 23(1):5009.
[26] Wang Q, Gossweiler G R, Craig S L, et al. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning[J]. Nature Communications, 2014, 5:4899.
[27] 马锡英. 光子晶体原理及应用[M]. 北京:科学出版社, 2010. Ma Xiying. Principle and application of photonic crystal[M]. Beijing:Science Press, 2010.
[28] Chan E P, Walish J J, Urbas A M, et al. Mechanochromic photonic gels[J]. Advanced Materials, 2013, 25(29):3934-3947.
[29] Haque M A, Kamita G, Kurokawa T, et al. Unidirectional alignment of lamellar bilayer in hydrogel:One-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color[J]. Advanced Materials, 2010, 22(45):5110-5114.
[30] Haque M A, Kurokawa T, Gong J P. Anisotropic hydrogel based on bilayers:Color, strength, toughness, and fatigue resistance[J]. Soft Matter, 2012, 8(31):8008-8016.
[31] Wei Z, Yang J H, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23):8114-8131.
[32] Walish J J, Kang Y, Mickiewicz R A, et al. Bioinspired electrochemically tunable block copolymer full color pixels[J]. Advanced Materials, 2010, 21(30):3078-3081.
[33] Nucara L, Greco F, Mattoli V. Electrically responsive photonic crystals:A review[J]. Journal of Materials Chemistry C, 2015, 3(33):8449-8467.
[34] Kubo S, Gu Z Z, Takahashi K, et al. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure[J]. Journal of the American Chemical Society, 2004, 126(26):8314-8319.
[35] Kuai S L, Bader G, Ashrit P V. Tunable electrochromic photonic crystals[J]. Applied Physics Letters, 2005, 86(22):967.
[36] Kubo S, Gu Z Z, Takahashi K, et al. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field[J]. Chemistry of Materials, 2005, 17(9):2298-2309.
[37] Yin T, Zhong D, Liu J, et al. Stretch tuning of the Debye ring for 2D photonic crystals on a dielectric elastomer membrane[J]. Soft Matter, 2018, 14(7):1120-1129.
[38] Chen B H, Bai Y Y, Xiang F, et al. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators[J]. Journal of Polymer Science Part B Polymer Physics, 2014, 52(16):1055-1060.
[39] Niu S C, Bo L, Ye J F, et al. Angle-dependent discoloration structures in wing scales of Morpho menelaus, butterfly[J]. Science China, 2016, 59(5):1-7.
[40] Giraldo M A, Yoshioka S, Liu C, et al. Coloration mechanisms and phylogeny of Morpho butterflies[J]. Journal of Experimental Biology, 2016, 219(24):3936-3944.
[41] 陈花玲, 罗斌, 朱子才, 等. 4D打印:智能材料与结构增材制造技术研究进展[J]. 西安交通大学学报, 2017, 8(51):1-12. Chen Hualing, Luo Bin, Zhu Zicai, et al. 4D Printing:Progress in additive manufacturing technology of smart materials and structure[J]. Journal of Xi'an Jiaotong University, 2017, 8(51):1-12.
[42] 李涤尘, 刘佳煜, 王延杰, 等. 4D打印-智能材料的增材制造技术[J]. 机电工程技术, 2014(5):1-9. Li Dichen, Liu Jiayu, Wang Yanjie, et al. 4D Printing-additive manufacturing technology of smart materials[J]. Mechanical & Electrical Engineering Technology, 2014(5):1-9.
文章导航

/