专题论文

基于微流控的细胞操纵方法与应用

  • 孙东 ,
  • 罗涛
展开
  • 香港城市大学生物医学工程系, 中国香港 999077
孙东,教授,研究方向为基于细胞的生物医学工程、机器人与自动控制技术,电子信箱:medsun@cityu.edu.hk

收稿日期: 2018-05-31

  修回日期: 2018-07-25

  网络出版日期: 2018-08-29

基金资助

国家自然科学基金委员会与香港研究局联合科研资助基金项目(N_CityU102/15)

Microfluidics based cell manipulation: Methods and applications

  • SUN Dong ,
  • LUO Tao
Expand
  • Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China

Received date: 2018-05-31

  Revised date: 2018-07-25

  Online published: 2018-08-29

摘要

微流控技术可实现微量液体的精密操控和多种功能模块的微型化集成,在细胞操纵方面具有精确、高效和低成本等传统手段无法比拟的优点,近些年成为学科交叉领域的研究热点之一。从细胞操纵的原理方法及应用出发,综述了微流控细胞操纵领域的最新研究进展,探讨、总结了各种细胞操纵方法的优缺点,并展望了微流控细胞操纵技术的发展趋势。

本文引用格式

孙东 , 罗涛 . 基于微流控的细胞操纵方法与应用[J]. 科技导报, 2018 , 36(16) : 29 -38 . DOI: 10.3981/j.issn.1000-7857.2018.16.003

Abstract

With the microfluidics, the precise control of micro-liquids and the miniaturized integration of multiple functionalities can be achieved, with incomparable advantages in the cell manipulation in terms of precision, efficiency and cost. Therefore, the microfluidics has become an interdisciplinary research hot spot in recent years. From the perspective of the cell manipulation methods and the corresponding applications, this paper reviews the latest progress in the field of the microfluidic cell manipulation, and discusses the advantages and disadvantages of various cell manipulation methods, and then analyzes the trend of the microfluidics based cell manipulation.

参考文献

[1] 刘琳, 厉坤鹏, 胡志敏, 等. 微流控芯片在细胞分选中的分析技术进展[J]. 中国细胞生物学学报, 2013, 35(5):727-733. Liu Lin, Li Kunpeng, Hu Zhimin, et al. Progress in analytical techniques of microfluidic chip on cell sorting[J]. Chinese Journal of Cell Biology, 2013, 35(5):727-733.
[2] Huh D, Bahng J H, Ling Y, et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification[J]. Analytical Chemistry, 2007, 79(4):1369-1376.
[3] Adan A, Alizada G, Kiraz Y, et al. Flow cytometry:Basic principles and applications[J]. Critical Reviews in Biotechnology, 2016, 37(2):163-176.
[4] Shields C W 4th, Reyes C D, López G P. Microfluidic cell sorting:A review of the advances in the separation of cells from debulking to rare cell isolation[J]. Lab on a Chip, 2015, 15(5):1230-1249.
[5] Di C D, Wu L Y, Lee L P. Dynamic single cell culture array[J]. Lab on a Chip, 2006, 6(11):1445-1449.
[6] Tran Q D, Kong T F, Hu D, et al. Deterministic sequential isolation of floating cancer cells under continuous flow[J]. Lab on a Chip, 2016, 16(15):2813-2819.
[7] Beech J P, Holm S H, Adolfssona K, et al. Sorting cells by size, shape and deformability[J]. Lab on a Chip, 2012, 12(6):1048-1051.
[8] Loutherback K, D'Silva J, Liu L, et al. Deterministic separation of cancer cells from blood at 10 mL/min[J]. AIP Advances, 2012, 2(4):042107.
[9] Zhang J, Yan S, Yuan D, et al. Fundamentals and applications of inertial microfluidics:A review[J]. Lab on a Chip, 2016, 16(1):10-34.
[10] Di C D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21):3038-3046.
[11] Kuntaegowdanahalli S S, Bhagat A S, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 2009, 9(20):2973-2980.
[12] Bhagat A A S, Hou H W, Li L D. et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation[J]. Lab on a Chip, 2011, 11(11):1870-1878.
[13] Sungyoung S. A continuous-flow microfluidic syringe filter for size-based cell sorting[J]. Lab on a Chip, 2015, 15(5):1250-1254.
[14] Song S, Choi S. Field-free, sheathless cell focusing in exponentially expanding hydrophoretic channels for microflow cytometry[J]. Cytometry Part A, 2013, 83(11):1034-1040.
[15] Choi S, Ku T, Song S, et al. Hydrophoretic high-throughput selection of platelets in physiological shear-stress range[J]. Lab on a Chip, 2011, 11(3):413-418.
[16] Karp J M, Karnik R. A cell rolling cytometer reveals the correlation between mesenchymal stem cell dynamic adhesion and differentiation state[J]. Lab on a Chip, 2014, 14(1):161-166.
[17] Zhao Q, Zhang J, Yan S, et al. High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays[J]. Scientific Reports, Nature Publishing Group, 2017, 7:41153.
[18] Hsu C, Carlo D, Chen C, et al. Microvortex for focusing, guiding and sorting of particles[J]. Lab on a Chip, 2008, 8(12):2128-2134.
[19] Loutherback K, Silva J D, Liu L, et al. Deterministic separation of cancer cells from blood at 10 mL/min[J]. AIP Advances, 2012, 2:042107.
[20] Hur S C, Tseb T K H, Di C D. Sheathless inertial cell ordering for extreme throughput flow cytometry[J]. Lab on a Chip, 2010, 10(3):274-280.
[21] Choi S, Ku T, Song S, et al. Hydrophoretic high-throughput selection of platelets in physiological shear-stress range[J]. Lab on a Chip, 2011, 11(3):413-418.
[22] Choi S, Song S, Choi C, et al. Continuous blood cell separation by hydrophoretic filtration[J]. Lab on a Chip, 2007, 7(11):1532-1538.
[23] Unger M A, Chou H, Thorsen T, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography[J]. Science, 2000, 288(5463):113-117.
[24] Melin J, Quake S R. Microfluidic large-scale integration:The evolution of design rules for biological automation[J]. Annual Review of Biophysics, 2007, 36:213-231.
[25] Frank T, Savaş Tay. Automated co-culture system for spatiotemporal analysis of cell-to-cell communication[J]. Lab on a Chip, 2015, 15(10):2192-2200.
[26] Prakadan S M, Shalek A K, Weitz D A. Scaling by shrinking:empowering single-cell "omics" with microfluidic devices[J]. Nature Reviews Genetics, 2017, 18(6):345.
[27] Macqueen L, Sun Y, Simmons C A. Mesenchymal stem cell mechanobiology and emerging experimental platforms[J]. Journal of the Royal Society Interface, 2013, 10(84):20130179.
[28] Zhao D, Lin M, Pedrosa E, et al. Characteristics of allelic gene expression in human brain cells from single-cell RNAseq data analysis[J]. BMC Genomics, BMC Genomics, 2017, 18(1):860.
[29] Acosta J R, Joost S, Karlsson K, et al. Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population[J]. Stem Cell Research & Therapy, Stem Cell Research & Therapy, 2017, 8(1):250.
[30] Gauvin R, Parenteau-Bareil R, Larouche D, et al. Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding[J]. Acta Biomaterialia, 2011, 7(9):3294-3301.
[31] Stoppel W L, Kaplan D L, Iii L D B. Electrical and mechanical stimulation of cardiac cells and tissue constructs[J]. Advanced Drug Delivery Reviews, 2015, 96:135-155.
[32] Luo T, Fan L, Zeng Y, et al. A simplified sheathless cell separation approach using combined gravitational-sedimentationbased prefocusing and dielectrophoretic separation[J]. Lab on a Chip, 2018, 18(11):28-33.
[33] Doh I, Cho Y. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process[J]. Sensors and Actuators A:Physical, 2005, 121(1):59-65.
[34] Prabhakarpandian B, Pant K, Klarmann G J, et al. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis[J]. Lab on a Chip, 2015, 15(5):1320-1328.
[35] Su W, Gao X, Jiang L, et al. Microfluidic platform towards point-of-care diagnostics in infectious diseases[J]. Journal of Chromatography A, 2015, 1377(1996):13-26.
[36] Chu H K, Huan Z, Mills J K, et al. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure[J]. Lab on a Chip, 2015, 15(3):920-930.
[37] Huan Z, Member S, Chu H K, et al. Characterization of a honeycomb-like scaffold with dielectrophoresis-based patterning for tissue engineering[J]. IEEE Transactions on Mechatronics, 2017, 64(4):755-764.
[38] Ho C, Lin R, Chang W, et al. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap[J]. Lab on a Chip, 2006, 6(6):724-734.
[39] Mittal N, Voldman J. nDEP microwells for single-cell patterning in physiological media[J]. Lab on a Chip, 2007, 7(9):1146-1153.
[40] Thomas R S, Morgan H, Green N G. Negative DEP traps for single cell immobilisation[J]. Lab on a Chip, 2009, 9(11):1534-1540.
[41] Castellanos A, Green N G, Morgan H, et al. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes[J]. Physical Review, 2003, 67(5):056302.
[42] Jia Y, Jiang H. Continuous-flow focusing of microparticles using induced-charge electroosmosis in a micro fl uidic device with 3D AgPDMS electrodes[J]. RSC Advances, 2015, 5(82):66602-66610.
[43] Wong P K, Chen C, Wang T et al. Electrokinetic bioprocessor for concentrating cells and molecules[J]. Analytical Chemistry, 2004, 76(23):6908-6914.
[44] Wu Y, Ren Y, Tao Y, et al. Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis[J]. Analytical Chemistry, 2016, 88(23):11791-11798.
[45] 黄爽, 何永清, 焦凤. 微流控芯片中颗粒/细胞磁操控的研究进展[J]. 分析化学, 2017, 45(8):1238-1247. Huang Shuang, He Yongqing, Jiao Feng. Advances of particles/cells magnetic manipulation in microfluidic chips[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8):1238-1247.
[46] Lee W, Tseng P, Di D. Microtechnology for cell manipulation and sorting[M]. Berlin:Springer, 2016.
[47] Lin Y A, Wong T, Bhardwaj U. Formation of high electromagnetic gradients through a particle-based microfluidic approach[J]. Journal of Micromechanics and Microengineering, 2007, 17(7):1299.
[48] Lin S, Chen D, Xie Y, et al. Single cell manipulation technology[J]. Nano Biomedical Engineering, 2015, 7(3):75-91.
[49] Ozkumur E, Shah A M, Ciciliano J C, et al. Inertial focusing for tumor antigen-dependent and-independent sorting of rare circulating tumor cells[J]. Science Translational Medicine, 2013, 5(179):179ra47.
[50] Karabacak N M, Spuhler P S, Fachin F, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples[J]. Nature Protocols, 2014, 9(3):694-710.
[51] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 1987, 330(6150):769-771.
[52] Wang K, Cheng J, Cheng S H, et al. Probing cell biophysical behavior based on actin cytoskeleton modeling and stretching manipulation with optical tweezers[J]. Applied Physics Letters, 2013, 103(8):083706.
[53] Hu S, Sun D. Automatic transportation of biological cells with a robot-tweezer manipulation system[J]. The International Journal of Robotics Research, 2011, 30(14):1681-1694.
[54] Gou X, Yang H, Fahmy T M, et al. Direct measurement of cell protrusion force utilizing a robot-aided cell manipulation system with optical tweezers for cell migration control[J]. The International Journal of Robotics Research, 2014, 33(14):1782-1792.
[55] Wang X, Chen S, Kong M, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies[J]. Lab on a Chip, 2011, 11(21):3656-3662.
[56] Chiou P Y, Ohta A T, Wu M C. Massively parallel manipulation of single cells and microparticles using optical images[J]. Nature, 2005, 436(7049):370-372.
[57] Shi J J, Huang H, Stratton Z, et al. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(23):3354-3359.
[58] Li S, Guo F, Chen Y, et al. Standing surface acoustic wave based cell coculture[J]. Analytical Chemistry, 2014, 86(19):9853-9859.
[59] Chiu T, Chao A, Chou W, et al. Optically-induced-dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (CTC) clusters based on their size characteristics[J]. Sensors & Actuators B:Chemical, 2018, 258:1161-1173.
[60] Hu W, Ishii K, Ohta A T. Cell Patterning in a hydrogel using optically induced dielectrophoresis[C]//2016 International Conference on Optical MEMS and Nanophotonics (OMN). Piscataway NJ:IEEE, 2016:6-7.
[61] Huang S, Hung L, Lee G. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform[J]. Lab on a Chip, 2016, 16(8):1447-1456.
[62] 蒋鹏, 孟龙, 蔡飞燕, 等. 基于声表面波的微操控技术研究进展[J]. 集成技术, 2013, 2(5):42-47. Jiang Peng, Meng Long, Cai Feiyan, et al. Progress in microscale acoustic manipulation based on surface acoustic wave[J]. Journal of Integration Technology, 2013, 2(5):42-47.
[63] Bourquin Y, Syed A, Reboud J, et al. Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics[J]. Angewandte Chemie International Edition, 2014, 53(22):5587-5696.
[64] Li S, Ding X, Mao Z, et al. Standing surface acoustic wave (SSAW)-based cell washing[J]. Lab on a Chip, 2015, 15(1):331-338.
[65] Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves[J]. Proceedings of the National Academy of Sciences, 2016, 113(6):1522-1527.
文章导航

/