专题论文

水环境中抗生素和抗性基因污染特征及控制措施

  • 徐建, 胡鹏, 吕佳佩, 郭昌胜
展开
  • 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
徐建,研究员,研究方向为水环境中污染物监测技术开发、污染物环境行为、控制和去除以及生态效应,电子信箱:xujian@craes.org.cn;胡鹏(共同第一作者),硕士研究生,研究方向为新型污染物环境行为,电子信箱:huphky@126.com

收稿日期: 2018-03-08

  修回日期: 2018-07-31

  网络出版日期: 2018-08-27

基金资助

国家自然科学基金项目(41673120,41703122)

Pollution characteristics and control measures of antibiotics and antibiotic resistance genes in the aquatic environment

  • XU Jian, HU Peng, LÜ Jiapei, GUO Changsheng
Expand
  • State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Received date: 2018-03-08

  Revised date: 2018-07-31

  Online published: 2018-08-27

摘要

抗生素作为一类抗菌类药物被广泛用于医疗、农业和畜牧业等领域,因其使用量大并能诱导产生耐药菌株,对人类健康和生态环境造成巨大威胁。在梳理近年来地表水环境中抗生素相关研究的基础上,阐述了水环境中抗生素和抗性基因的污染来源和污染特征,分析了环境浓度水平下抗生素污染对人群和生态环境的影响,讨论了水环境中抗生素污染的控制措施及目前研究的主要问题,并对今后的研究进行了展望。

本文引用格式

徐建, 胡鹏, 吕佳佩, 郭昌胜 . 水环境中抗生素和抗性基因污染特征及控制措施[J]. 科技导报, 2018 , 36(15) : 13 -23 . DOI: 10.3981/j.issn.1000-7857.2018.15.002

Abstract

Antibiotics are widely used in medical, agricultural and animal husbandry fields, however, they can induce drug-resistant bacteria and resistance genes, posing a great threat to human health and ecological environment. Based on a comprehensive analysis of antibiotics and their resistance genes in the aqueous environment, this paper reviews the current state of knowledge on antibiotics and antibiotic resistance genes, including their sources and migration paths, the occurrence and concentration levels in aquatic environment, and their possible ecotoxicity. Besides, the control measures of antibiotics pollution in the water environment are discussed and current research topics on antibiotics are proposed as well.

参考文献

[1] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1):1-13.
[2] Halling-Sørensen B, Nors Nielsen S, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-A review[J]. Chemosphere, 1998, 36(2):357.
[3] Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental Pollution, 2009, 157(11):2893-2902
[4] 符明淳, 席会平, 刘彦钊. 乳、肉制品中抗生素残留现状及监控对策[J]. 中国动物检疫, 2008, 25(6):20-22. Fu Mingchun, Xi Huiping, Liu Yanzhao. Present status and the monitoring measures of antibiotics residues in dairy and meat products[J]. China Animal Health Inspection, 2008, 25(6):20-22.
[5] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7):1075-1083. Zhang Qiang, Xin Qi, Zhu Jingmin, et al. The antibiotic contaminations in the mian water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7):1075-1083.
[6] Kümmerer K. Antibiotics in the aquatic environment-A review-Part I[J].Chemosphere, 2009, 75(4):417-434.
[7] Sapkota A, Sapkota A R, Kucharski M, et al. Aquaculture practices and potential human health risks:Current knowledge and future priorities[J]. Environment International, 2008, 34(8):1215-1226.
[8] Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science & Health Part B Pesticides Food Contaminants & Agricultural Wastes, 2011, 46(3):272-280.
[9] 张芊芊. 中国流域典型新型有机污染物排放量估算、多介质归趋模拟及生风险评估[D]. 广州:中国科学院广州地球化学研究所, 2015. Zhang Qianqian. Emission estimation, multimedia fate modeling and risk assessment of typical emerging pollutants at river basin scale in China[D]. Guanzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2015.
[10] 郑英丽, 周子君. 抗生素滥用的根源、危害及合理使用的策略[J]. 医院管理论坛, 2007, 24(1):23-27. Zheng Yingli, Zhou Zijun. Harm, Cause and rational use of abusing antibiotics[J]. Hospital Management Forum, 2007, 24(1):23-27.
[11] Hernando M, Mezcua M, Fernandezalba A, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J].Talanta, 2006, 69(2):334-342.
[12] Gulkowska A, Leung H W, So M K, et al.Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1/2):395-403.
[13] Baquero F, Martínez J L, Cantón R.Antibiotics and antibiotic resistance in water environments[J]. Current Opinion in Biotechnology, 2008, 19(3):260-265.
[14] Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA[J]. Science of the Total Environment, 2006, 361(1-3):196-207.
[15] Miao X S, Bishay F, Chen M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada[J]. Environmental Science & Technology, 2004, 38(13):3533-3541.
[16] Lindberg R H, Patrik W, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden[J]. Environmental Science & Technology, 2005, 39(10):3421-3429.
[17] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1-2):109-118.
[18] Li W, Shi Y, Gao L, et al. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China[J]. Chemosphere, 2013, 92(4):435-444.
[19] 徐维海, 张干, 邹世春, 等. 典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J]. 环境科学, 2007, 28(8):1779-1783. Xu Weihai, Zhang Gan, Zhou Shichun, et al. Occurrence, distribution and fate of antibiotics in sewage treatment plants[J]. Environmental Science, 2007, 28(8):1779-1783.
[20] 甘秀梅, 严清, 高旭, 等. 典型抗生素在中国西南地区某污水处理厂中的行为和归趋[J]. 环境科学, 2014, 35(5):1817-1823. Gan Xiumei, Yan Qing, Gao Xu, et al. Occurrence and fate of typical antibiotics in a wastewater treatment plant in southwest China[J]. Environmental Science, 2014, 35(5):1817-1823.
[21] Kim S C, Carlson K. LC-MS2 for quantifying trace amounts of pharmaceutical compounds in soil and sediment matrices[J]. Trac Trends in Analytical Chemistry, 2005, 24(7):635-644.
[22] Choi K, Kim Y, Park J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea[J]. Science of the Total Environment, 2008, 405(1):120-128.
[23] Chang H, Hu J, Asami M, et al. Simultaneous analysis of 16 sulfonamide and trimethoprim antibiotics in environmental waters by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1190(1):390-393.
[24] Li W, Shi Y, Gao L, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315.
[25] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833.
[26] Zhang R, Zhang G, Zheng Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China:Impacts of river discharge[J]. Ecotoxicology & Environmental Safety, 2012, 80(2):208-215.
[27] Tang J, Shi T, Wu X, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China:Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122:154-161.
[28] Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science & Health Part B Pesticides Food Contaminants & Agricultural Wastes, 2011, 46(3):272-280.
[29] Zheng S, Qiu X, Chen B, et al. Antibiotics pollution in Jiulong River estuary:Source, distribution and bacterial resistance[J]. Chemosphere, 2011, 84(11):1677-1685.
[30] Jiang H, Zhang D, Xiao S, et al. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China[J]. Environmental Science & Pollution Research, 2013, 20(12):9075-9083.
[31] 陆克祥, 隋铭皓, 高乃云. 固相萃取-超高压液相色谱-串联质谱测定水中19种抗生素[J]. 分析测试学报, 2010, 29(12):1209-1214. Lu Kexiang, Sui Minghao, Gao Naiyun. Simultaneous determination of 19 antibiotics in environmental water samples using solid phase extraction-ultra pressure liquid chromatography coupled with tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2010, 29(12):1209-1214.
[32] Jiang L, Hu X, Yin D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828.
[33] Ruijie Zhang, Gan Zhang, Jianhui Tang, et al. Levels, spatial distribution and sources of selected antibiotics in the East River (Dongjiang), South China[J]. Aquatic Ecosystem Health & Management, 2012, 15(15):210-218.
[34] Bai Y, Meng W, Xu J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China[J]. Environmental Science Processes & Impacts, 2014, 16(3):586-593.
[35] Zheng Q, Zhang R, Wang Y, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China:Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78(8):26-33.
[36] Zou S, Xu W, Zhang R, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China:Impacts of river discharge and aquaculture activities[J]. Environmental pollution, 2011, 159(8):2913-2920.
[37] Niu Z G, Kai Z, Ying Z. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Marine Pollution Bulletin, 2016, 107(1):245-250.
[38] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of china:source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
[39] Wei Y, Zhang Y, Xu J, et al. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry[J]. Frontiers of Environmental Science & Engineering, 2014, 8(3):357-371.
[40] Xu J, Zhang Y, Zhou C, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China[J]. Science of the Total Environment, 2014, 497-498(3):267.
[41] Bai Y, Meng W, Xu J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China[J]. Environmental Science Processes & Impacts, 2014, 16(3):586.
[42] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450.
[43] Zhang X X, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations[J]. Environmental science & technology, 2011, 45(7):2598-2604.
[44] Ma L P, Zhang X X, Zhao F Z, et al. Sewage treatment plant serves as a hot-spot reservoir of integrons and gene cassettes[J]. Journal of Environmental Biology, 2013, 34:391-399.
[45] Chen H, Zhang M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China[J]. Environment International, 2013, 55(4):9-14.
[46] Ling Z H, Yang Y, Huang Y L, et al. A preliminary investigation on the occurrence and distribution of antibiotic resistance genes in the Beijiang River, south China[J]. Journal of Environmental Sciences (China), 2013, 25:1656-1661.
[47] Jiang L, Hu X, Xu T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the Total Environment, 2013, 458-460C(3):267-272.
[48] Yi L, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225.
[49] Chen B, Liang X, Huang X, et al. Differentiating anthropogenic impacts on ARGs in the Pearl River Estuary by using suitable gene indicators[J]. Water Research, 2013, 47(8):2811-2820.
[50] Koike S, Krapac I G, Oliver H D, et al. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period[J]. Applied & Environmental Microbiology, 2007, 73(15):4813-4823.
[51] Xu L, Ouyang W, Qian Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.[J]. Environmental Pollution, 2016, 213:119-126.
[52] Guo X, Li J, Yang F, et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China.[J]. Science of the Total Environment, 2014, 493:626-631.
[53] Peak N, Knapp C W, Yang R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environmental Microbiology, 2007, 9(1):143-151.
[54] Ji X, Shen Q, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, s235-236(20):178-185.
[55] Xu J, Xu Y, Wang H, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119:1379-1385.
[56] Yamashita N, Yasojima M, Nakada N, et al. Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms[J]. Water Science & Technology, 2006, 53(11):65-72.
[57] Jiang L, Lin Z, Hu X, et al. Toxicity prediction of antibiotics on luminescent bacteria, photobacterium phosphoreum, based on their quantitative structure-activity relationship models[J]. Bulletin of Environmental Contamination & Toxicology, 2010, 85(6):550-555.
[58] Wollenberger L, Halling-Sørensen B, Kusk K O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna[J]. Chemosphere, 2000, 40(7):723-730.
[59] Kim H Y, Lee M J, Yu S H, et al. The individual and population effects of tetracycline on Daphnia magna in multigenerational exposure[J]. Ecotoxicology, 2012, 21(4):993-1002.
[60] Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7):751-757.
[61] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440.
[62] 阮存鑫. 四环素与铜复合污染对土壤硝化作用及植物生长的影响[D]. 南京:南京林业大学, 2010. Ruan Cunxin. Effect of combined pollution of tetracycline and copper on soil nitrification and plant grow[D]. Nanjing:Nanjing Forestry University, 2010.
[63] Gartiser S, Urich E, Alexy R, et al. Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes[J]. Chemosphere, 2007, 66(10):1839-1848.
[64] Álvarez J A, Otero L, Lema J M, et al. The effect and fate of antibiotics during the anaerobic digestion of pig manure[J]. Bioresource Technology, 2010, 101(22):8581-8586.
[65] Akyol C, Ince O, Cetecioglu Z, et al. The fate of oxytetracycline in two-phase and single-phase anaerobic cattle manure digesters and its effects on microbial communities[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(3):806-814.
[66] Wu X, Wei Y, Zheng J, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10):5924-5931.
[67] Varel V H, Wells J E, Shelver W L, et al. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure[J]. Journal of Applied Microbiology, 2012, 112(4):705-715.
[68] 王瑞, 魏源送. 畜禽粪便中残留四环素类抗生素和重金属的污染特征及其控制[J]. 农业环境科学学报, 2013(9):1705-1719. Wang Rui, Wei Yuansong. Pollution and control of tetracyclines and heavy metals residues in animal manure[J]. Journal of Agro-Environment Science, 2013(9):1705-1719.
[69] Bao Y, Zhou Q, Guan L, et al. Depletion of chlortetracycline during composting of aged and spiked manures[J]. Waste Management, 2009, 29(4):1416-1423.
[70] Ramaswamy J, Prasher S O, Patel R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(101):2294-2299.
[71] Wu X, Wei Y, Zheng J, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10):5924-5931.
[72] Bao Y, Zhou Q, Guan L, et al. Depletion of chlortetracycline during composting of aged and spiked manures[J]. Waste Management, 2009, 29(4):1416-1423.
[73] Arikan O A, Sikora L J, Mulbry W, et al. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves[J]. Bioresource Technology, 2007, 98(1):169-176.
[74] Wang Q, Yates S R. Laboratory study of oxytetracycline degradation kinetics in animal manure and soil[J]. Journal of Agricultural & Food Chemistry, 2008, 56(5):1683-1688.
[75] Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9):3468-3473.
[76] Rosal R, Rodríguez A, Perdigón-Melón J A, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation[J]. Water Research, 2010, 44(2):578-588.
[77] Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment:Implications for environmental discharge and wastewater recycling[J]. Water Research, 2007, 41(41):4164-4176.
[78] Öncü Nalan Bilgin, Menceloglu Yusuf Ziya, Balcíoglu Işíl Akmehmet. Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution[J]. Journal of Advanced Oxidation Technologies, 2011, 14(14):1452-1464.
[79] Cengiz M, Uslu M O, Balcioglu I. Treatment of E. coli HB101 and the tetM gene by Fenton's reagent and ozone in cow manure[J]. Journal of Environmental Management, 2010, 91(12):2590-2593.
[80] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693.
[81] 庄耀, 任洪强, 耿金菊, 等. 混凝法去除城市生活污水中抗性基因[J]. 环境工程学报, 2014, 8(12):5105-5110. Zhuang Yao, Ren Hongqiang, Gen Jinju, et al. Removal of antibiotic resistant genes in municipal wastewater with coagulation method[J]. Chinese Journal of Environmental Engineering, 2014, 8(12):5105-5110.
[82] 王健行, 魏源送, 成宇涛, 等. 颗粒活性炭深度处理抗生素废水[J]. 环境工程学报, 2013, 2(2):401-410. Wang Jianxing, Wei Yuansong, Cheng Yutao, et al. Advanced treatment of antibiotic wastewater by granular activated carbon[J]. Chinese Journal of Environmental Engineering, 2013, 2(2):401-410.
[83] Hijosa-Valsero M, Fink G, Schlüsener M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5):713-719.
[84] Chen H, Zhang M. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China[J]. Environmental Science & Technology, 2013, 47(15):8157-8163.
[85] Burch T R, Sadowsky M J, Lapara T M. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids[J]. Frontiers in Microbiology, 2013, 4(4):17.
[86] 佟娟, 魏源送. 污水处理厂削减耐药菌与抗性基因的研究进展[J]. 环境科学学报, 2012, 32(11):2650-2659. Tong Juan, Wei Yuansong. State-of-the-art removal of antibiotic resistance bacteria (ARB) and antibioticresistance gene (ARG) in wastewater treatment plants (WWTPs)[J]. Acta Scientiae Circumstantiae, 2012, 32(11):2650-2659.
[87] Ma Y, Wilson C A, Novak J T, et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons[J]. Environmental Science & Technology, 2011, 45(18):7855-7861.
文章导航

/