专题论文

面向复杂系统理解与管控的认知仿真方法

  • 陶九阳 ,
  • 吴琳 ,
  • 胡晓峰 ,
  • 贺筱媛
展开
  • 1. 国防大学联合作战学院, 北京 100091;
    2. 陆军工程大学指挥控制工程学院, 南京 210007
陶九阳,博士研究生,研究方向为战争模拟、复杂系统、军事运筹与智能决策,电子信箱:taojiuyang@126.com

收稿日期: 2018-04-03

  修回日期: 2018-05-11

  网络出版日期: 2018-06-21

基金资助

军民共用重大研究计划联合基金项目(U1435218);国家自然科学基金项目(61403400,61403401)

Cognitive simulation for complex system understanding and management

  • TAO Jiuyang ,
  • Wu Lin ,
  • HU Xiaofeng ,
  • HE Xiaoyuan
Expand
  • 1. Joint Operations College, National Defense University, Beijing 100091, China;
    2. Command and Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China

Received date: 2018-04-03

  Revised date: 2018-05-11

  Online published: 2018-06-21

摘要

概述了复杂性科学的兴起与发展历程,论述了复杂系统的主要研究方法,以及复杂系统难以理解和管控的根源;分析了认知智能的突破性进展与关键技术;提出了面向复杂系统理解和管控的认知仿真方法,以及认知仿真的基本理念;指出了目前认知仿真研究中存在的问题和不足。

本文引用格式

陶九阳 , 吴琳 , 胡晓峰 , 贺筱媛 . 面向复杂系统理解与管控的认知仿真方法[J]. 科技导报, 2018 , 36(12) : 55 -65 . DOI: 10.3981/j.issn.1000-7857.2018.12.008

Abstract

The rise and the development of the complexity science are reviewed. The concepts of the uncertainty, the adaptability and the emergence of the complex systems are analyzed, as well as the main research methods, and the source of difficulties in their understanding and control. The breakthroughs and the key technologies of the cognitive intelligence are summarized, together with the basic concepts of the cognitive simulation. Finally, the existing problems and shortcomings of the cognitive simulation are outlined.

参考文献

[1] Kadomtsev B B. Tokamak plasma:A complex physical system[M]. London:Institute of Physics Pub, 1992.
[2] Haken H. Information and self-organization:A macroscopic ap-proach to complex systems[M]. New York:Springer Publishers, 2000.
[3] Blasius B, Huppert A, Stone L. Complex dynamics and phase synchronization in spatially extended ecological systems[J]. Na-ture, 1999, 399(6734):354-359.
[4] Costanza R, Wainger L, Folke C, et al. Modeling complex eco-logical economic systems[J]. Bioscience, 1993, 43(8):545-555.
[5] Thrush S F, Schneider D C, Legendre P, et al. Scaling-up from experiments to complex ecological systems:Where to next?[J]. Journal of Experimental Marine Biology & Ecology, 1997, 216(216):243-254.
[6] Cohen I R, Harel D. Explaining a complex living system:Dy-namics, multi-scaling and emergence[J]. Journal of the Royal Society Interface, 2007, 4(13):175-182.
[7] Juarrero A. Dynamics in Action:Intentional behavior as a com-plex system[J]. Philosophical Review, 1999, 2(3):24-57.
[8] Diegues A C, Roselino J E. The Economy as an evolving com-plex system[J]. Oup Catalogue, 2005, 65(297):796-800.
[9] Buckley W. Society-A complex adaptive system:Essays in so-cial theory[M]. London:Gordon and Breach Science Publish-ers, 1998.
[10] 胡晓峰, 司光亚, 罗批, 等. 战争复杂系统与战争模拟研究[J]. 系统仿真学报, 2005, 17(11):2769-2774. Hu Xiaofeng, Si Guangya, Luo Pi, et al. Study on war com-plex system and war gaming and simulation[J]. Journal of Sys-tem Simulation, 2005, 17(11):2769-2774.
[11] 胡晓峰. 战争复杂性与信息化战争模拟[J]. 系统仿真学报, 2006, 18(12):3572-3580. Hu Xiaofeng. War complexity and war gaming & simulation in the information age[J]. Journal of System Simulation, 2006, 18(12):3572-3580.
[12] Prigogine I, Stengers I, Pagels H R. Order out of Chaos[J]. Physics Today, 1985, 38(1):97-99
[13] Haken H. Advanced synergetic[M]. New York:Springer-Ver-lag, 1983.
[14] Thom R. Structural stability and morphogenesis[J]. Bulletin of Mathematical Biology, 1976, 8(1):629-632.
[15] Shenker S H, Stanford D. Black holes and the butterfly effect[J]. Journal of High Energy Physics, 2013, 2014(3):1-25.
[16] Karkuszewski Z P, Jarzynski C, Zurek W H. Quantum chaotic environments, the butterfly effect, and decoherence[J]. Physi-cal Review Letters, 2002, 89(17):170405.
[17] Marchal P. John von Neumann:The founding father of artifi-cial life[J]. Artificial Life, 1998, 4(3):229-235.
[18] Wolfram S, Mallinckrodt A J. Cellular automata and complexi-ty[J]. Computers in Physics, 1995, 9(1):55-62.
[19] Wolfram S. Cellular automata as models of complexity[J]. Na-ture, 1984, 311(5985):419-424.
[20] Anderson P W. Complexity Ⅱ:The Santa Fe Institute[J]. Phys-ics Today, 1992, 45(6):9-11.
[21] Langton I C G, Taylor C, Farmer J D, et al. Santa Fe Institute studies in the sciences of complexity[M]. Oxford:Oxford Uni-versity Press, 1992.
[22] Holland J H. Complex adaptive systems[J]. Daedalus, 1992, 121(1):17-30.
[23] Malina R F. Hidden Order:How adaptation builds complexi-ty, by John H. Holland[J]. Artificial Life, 1996, 2(3):333-335.
[24] Lansing J S. Complex adaptive systems[J]. Annual Review of Anthropology, 2003, 32(4):183-204.
[25] Waldrop M M. Complexity:The emerging science at the edge of order and chaos[M]. New York:Simon & Schuster Publish-ers, 1992.
[26] Waldrop M M, Lewin R. Complexity:The emerging science at the edge of order and chaos; Complexity:Life at the edge of chaos[J]. Science, 1992, 259(6):387-388.
[27] Gell-Mann M. The quark and the jaguar:Adventures in the simple and the complex[M]. San Francisco:W.H. Freeman Publishers, 1994.
[28] Pauwelyn J. At the edge of chaos? Foreign investment law as a complex adaptive system, how it emerged and how it can be reformed[J]. Social Science Electronic Publishing, 2013, 29(2):372-418.
[29] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[30] Barabasi A L, Albert R. Albert, R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[31] Wang J, Huo K, Ma L, et al. Toward an understanding of the protein interaction network of the human liver[J]. Molecular Systems Biology, 2011, 7(1):536-536.
[32] 钱学森. 一个科学新领域——开放的复杂巨系统及其方法论[J]. 上海理工大学学报, 2011, 12(6):526-532. Qian Xuesen. A new field of science:The open complex giant system and its methodology[J]. Journal of Shanghai polytech-nic university, 2011, 12(6):526-532.
[33] 于景元. 钱学森关于开放的复杂巨系统的研究[J]. 系统工程理论与实践, 1992, 12(5):8-12. Yu Jingyuan. Qian Xuesen's research on the open complex gi-ant system[J]. Systems Engineering-Theory & Practice, 1992, 12(5):8-12.
[34] 王飞跃, 戴汝为, 张嗣瀛, 等. 关于城市交通、物流、生态综合发展的复杂系统研究方法[J]. 复杂系统与复杂性科学, 2004, 1(2):60-69. Wang Feiyue, Dai Ruwei, Zhang Siying, et al. A Complex sys-tem approach for studying sustainable and integrated develop-ment of metropolitan transportation, logistics and ecosystems[J]. Complex Systems and Complexity Science, 2004, 1(2):60-69.
[35] Kobayashi N, Kuninaka H, Wakita J I, et al. Statistical fea-tures of complex systems-Toward establishing sociological physics[J]. Journal of the Physical Society of Japan, 2011, 80(7):785-791.
[36] Bar-Yam Y, General features of complex systems[R], Cam-bridge:Eolss Publishers, 2002.
[37] Mcdaniel R R, Driebe D J. Uncertainty and surprise in com-plex systems[M]. Berlin:Springer Berlin Heidelberg Publish-ers, 2005.
[38] Parry G W. The characterization of uncertainty in probabilis-tic risk assessments of complex systems[J]. Reliability Engi-neering & System Safety, 1996, 54(2):119-126.
[39] Holland J H. Complex Adaptive Systems and Spontaneous Emergence[C]//Curzio A Q, Fortis M. Complexity and industri-al clusters. Physica-Verlag HD, 2002:25-34.
[40] Toroczkai Z. Complexity:A guided tour[J]. Physics Today, 2010, 63(2):47-48.
[41] Farmer J D. Chaotic attractors of an infinite-dimensional dy-namical system[J]. Physica D Nonlinear Phenomena, 1982, 4(3):366-393.
[42] Kitchens B P. Symbolic Dynamics[M]. Berlin:Springer Berlin Heidelberg Publishers, 1998.
[43] Sauer P W, Pai M A. Power system dynamics and stability[M]. New Jersey:Prentice Hall, 1998.
[44] Lansing J S. Complex adaptive systems[J]. Annual Review of Anthropology, 2003, 32(4):183-204.
[45] Galletly J. Evolutionary algorithms in theory and practice:Evo-lution strategies, evolutionary programming, genetic algorithm[M]. Oxford:Oxford University Press, 1998.
[46] Hsu C S. A theory of cell-to-cell mapping dynamical systems[J]. Journal of Applied Mechanics, 1980, 47(4):931-939.
[47] 中国科协学会学术部. 复杂系统建模仿真中的困惑和思考[M]. 北京:中国科学技术出版社, 2012. Department of Societies and Academic, China Association for Science and Technology. Bewilderment and thinking for com-plex system modeling and simulation[M]. Beijing:China Sci-ence and Technology Press, 2012.
[48] Surdu J R, Kittka K. The Deep Green concept[C]//Association for Computing Machinery. Spring simulation multiconference, Ottawa, 2008:623-631.
[49] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[50] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676):354-359.
[51] Silver D, Hubert T, Schrittwieser J, et al. Mastering chess and shogi by self-play with a general reinforcement learning algo-rithm[J]. arXiv:1712.01815v1, 2017.
[52] Moravcík M, Schmid M, Burch N, et al. Deep Stack:Expertlevel artificial intelligence in heads-up no-limit poker[J]. Sci-ence, 2017, 356(6337):508-513.
[53] Brown N, Sandholm T. The superhuman AI for No-Limit pok-er[C]//IJCAI. Twenty-sixth international joint conference on artificial intelligence, Melbourne, 2017:5226-5228.
[54] Nicholas E, David C, Corey S, et al. Genetic fuzzy based artifi-cial intelligence for unmanned combat aerial[J]. Journal of De-fense Management, 2016, 6(1):1-7.
[55] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554
[56] Vincent P, Larochelle H, Bengio Y, et al. Extracting and com-posing robust features with denoising autoencoders[C]//Associ-ation for Computing Machinery. International Conference on Machine Learning, 2008:1096-1103.
[57] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising au-toencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learn-ing Research, 2010, 11(6):3371-3408.
[58] Sutskever I, Hinton G, Taylor G. The recurrent temporal re-stricted boltzmann machine[C]//Association for Computing Ma-chinery. International Conference on Neural Information Pro-cessing Systems. British Columbia, 2008:1601-1608.
[59] Hinton G E. A practical guide to training restricted boltzmann machines[J]. Momentum, 2012, 9(1):599-619.
[60] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//Association for Computing Machin-ery. International Conference on International Conference on Machine Learning. Omnipress, 2010:807-814.
[61] Ranzato M A, Boureau Y L, Lecun Y. Sparse feature learning for deep belief networks[C]//Association for Computing Machinery. International conference on neural information pro-cessing systems. British Colambia, 2007:1185-1192.
[62] Zeiler M D, Fergus R. Visualizing and understanding convolu-tional networks[C]//Springer. European conference on comput-er vision. Cham, 2014:818-833.
[63] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks[C]//IEEE. IEEE International conference on acoustics, speech and signal processing. 2013:6645-6649.
[64] Sundermeyer M, Schlüter R, Ney H. LSTM Neural Networks for Language Modeling[C]//Conference of the international speech communication association, Portland, 2012:601-608.
[65] Greff K, Srivastava R K, Koutnik J, et al. LSTM:A search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(10):2222-2232.
[66] Sutton R S, Barto A G. Reinforcement Learning:An Introduc-tion, Bradford Book[J]. IEEE Transactions on Neural Net-works, 2005, 16(1):285-286.
[67] Watkins C J C H, Dayan P. Q-learning[C]//International con-ference on machine learning, Aberdeen, 1992:279-292.
[68] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. Computer Science. arXiv:1312.5602v1, 2013.
[69] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[70] Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3/4):229-256.
[71] Coulom R. Efficient selectivity and backup operators in mon-te-carlo tree search[J]. Lecture Notes in Computer Science, 2006, 4630:72-83.
[72] Kulkarni T D, Narasimhan K R, Saeedi A, et al. Hierarchical deep reinforcement learning:Integrating temporal abstraction and intrinsic motivation[C]//Proceedings of the Conference on Neural Information Processing Systems. Barcelona, 2016:3675-3683
[73] Taylor M E, Stone P. Behavior transfer for value-functionbased reinforcement learning[C]//International joint confer-ence on autonomous agents and multiagent systems. ACM, 2005:53-59.
[74] Tampuu A, Matiisen T, Kodelja D, et al. Multi-Agent coopera-tion and competition with deep reinforcement learning. arXiv:1511.08779, 2015.
[75] Oh J, Chockalingam V, Singh S, et al. Control of memory, ac-tive perception, and action in Minecraft[C]//Proceedings of the International Conference on Machine Learning. New York, 2016:2790-2799.
[76] Vinyals O, Ewalds T, Bartunov S, et al. StarCraft Ⅱ:A new challenge for reinforcement learning[J]. arXiv:1708.04782v1, 2017.
[77] Wen C. Exploration and study on similarity theory[J]. Journal of Systems Engineering & Electronics, 1992, 3(1):9-20.
[78] Shwartz-Ziv R, Tishby N. Opening the black box of deep neu-ral networks via Information[J]. arXiv:1703.00810, 2017.
文章导航

/