[1] Kadomtsev B B. Tokamak plasma:A complex physical system[M]. London:Institute of Physics Pub, 1992.
[2] Haken H. Information and self-organization:A macroscopic ap-proach to complex systems[M]. New York:Springer Publishers, 2000.
[3] Blasius B, Huppert A, Stone L. Complex dynamics and phase synchronization in spatially extended ecological systems[J]. Na-ture, 1999, 399(6734):354-359.
[4] Costanza R, Wainger L, Folke C, et al. Modeling complex eco-logical economic systems[J]. Bioscience, 1993, 43(8):545-555.
[5] Thrush S F, Schneider D C, Legendre P, et al. Scaling-up from experiments to complex ecological systems:Where to next?[J]. Journal of Experimental Marine Biology & Ecology, 1997, 216(216):243-254.
[6] Cohen I R, Harel D. Explaining a complex living system:Dy-namics, multi-scaling and emergence[J]. Journal of the Royal Society Interface, 2007, 4(13):175-182.
[7] Juarrero A. Dynamics in Action:Intentional behavior as a com-plex system[J]. Philosophical Review, 1999, 2(3):24-57.
[8] Diegues A C, Roselino J E. The Economy as an evolving com-plex system[J]. Oup Catalogue, 2005, 65(297):796-800.
[9] Buckley W. Society-A complex adaptive system:Essays in so-cial theory[M]. London:Gordon and Breach Science Publish-ers, 1998.
[10] 胡晓峰, 司光亚, 罗批, 等. 战争复杂系统与战争模拟研究[J]. 系统仿真学报, 2005, 17(11):2769-2774. Hu Xiaofeng, Si Guangya, Luo Pi, et al. Study on war com-plex system and war gaming and simulation[J]. Journal of Sys-tem Simulation, 2005, 17(11):2769-2774.
[11] 胡晓峰. 战争复杂性与信息化战争模拟[J]. 系统仿真学报, 2006, 18(12):3572-3580. Hu Xiaofeng. War complexity and war gaming & simulation in the information age[J]. Journal of System Simulation, 2006, 18(12):3572-3580.
[12] Prigogine I, Stengers I, Pagels H R. Order out of Chaos[J]. Physics Today, 1985, 38(1):97-99
[13] Haken H. Advanced synergetic[M]. New York:Springer-Ver-lag, 1983.
[14] Thom R. Structural stability and morphogenesis[J]. Bulletin of Mathematical Biology, 1976, 8(1):629-632.
[15] Shenker S H, Stanford D. Black holes and the butterfly effect[J]. Journal of High Energy Physics, 2013, 2014(3):1-25.
[16] Karkuszewski Z P, Jarzynski C, Zurek W H. Quantum chaotic environments, the butterfly effect, and decoherence[J]. Physi-cal Review Letters, 2002, 89(17):170405.
[17] Marchal P. John von Neumann:The founding father of artifi-cial life[J]. Artificial Life, 1998, 4(3):229-235.
[18] Wolfram S, Mallinckrodt A J. Cellular automata and complexi-ty[J]. Computers in Physics, 1995, 9(1):55-62.
[19] Wolfram S. Cellular automata as models of complexity[J]. Na-ture, 1984, 311(5985):419-424.
[20] Anderson P W. Complexity Ⅱ:The Santa Fe Institute[J]. Phys-ics Today, 1992, 45(6):9-11.
[21] Langton I C G, Taylor C, Farmer J D, et al. Santa Fe Institute studies in the sciences of complexity[M]. Oxford:Oxford Uni-versity Press, 1992.
[22] Holland J H. Complex adaptive systems[J]. Daedalus, 1992, 121(1):17-30.
[23] Malina R F. Hidden Order:How adaptation builds complexi-ty, by John H. Holland[J]. Artificial Life, 1996, 2(3):333-335.
[24] Lansing J S. Complex adaptive systems[J]. Annual Review of Anthropology, 2003, 32(4):183-204.
[25] Waldrop M M. Complexity:The emerging science at the edge of order and chaos[M]. New York:Simon & Schuster Publish-ers, 1992.
[26] Waldrop M M, Lewin R. Complexity:The emerging science at the edge of order and chaos; Complexity:Life at the edge of chaos[J]. Science, 1992, 259(6):387-388.
[27] Gell-Mann M. The quark and the jaguar:Adventures in the simple and the complex[M]. San Francisco:W.H. Freeman Publishers, 1994.
[28] Pauwelyn J. At the edge of chaos? Foreign investment law as a complex adaptive system, how it emerged and how it can be reformed[J]. Social Science Electronic Publishing, 2013, 29(2):372-418.
[29] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[30] Barabasi A L, Albert R. Albert, R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[31] Wang J, Huo K, Ma L, et al. Toward an understanding of the protein interaction network of the human liver[J]. Molecular Systems Biology, 2011, 7(1):536-536.
[32] 钱学森. 一个科学新领域——开放的复杂巨系统及其方法论[J]. 上海理工大学学报, 2011, 12(6):526-532. Qian Xuesen. A new field of science:The open complex giant system and its methodology[J]. Journal of Shanghai polytech-nic university, 2011, 12(6):526-532.
[33] 于景元. 钱学森关于开放的复杂巨系统的研究[J]. 系统工程理论与实践, 1992, 12(5):8-12. Yu Jingyuan. Qian Xuesen's research on the open complex gi-ant system[J]. Systems Engineering-Theory & Practice, 1992, 12(5):8-12.
[34] 王飞跃, 戴汝为, 张嗣瀛, 等. 关于城市交通、物流、生态综合发展的复杂系统研究方法[J]. 复杂系统与复杂性科学, 2004, 1(2):60-69. Wang Feiyue, Dai Ruwei, Zhang Siying, et al. A Complex sys-tem approach for studying sustainable and integrated develop-ment of metropolitan transportation, logistics and ecosystems[J]. Complex Systems and Complexity Science, 2004, 1(2):60-69.
[35] Kobayashi N, Kuninaka H, Wakita J I, et al. Statistical fea-tures of complex systems-Toward establishing sociological physics[J]. Journal of the Physical Society of Japan, 2011, 80(7):785-791.
[36] Bar-Yam Y, General features of complex systems[R], Cam-bridge:Eolss Publishers, 2002.
[37] Mcdaniel R R, Driebe D J. Uncertainty and surprise in com-plex systems[M]. Berlin:Springer Berlin Heidelberg Publish-ers, 2005.
[38] Parry G W. The characterization of uncertainty in probabilis-tic risk assessments of complex systems[J]. Reliability Engi-neering & System Safety, 1996, 54(2):119-126.
[39] Holland J H. Complex Adaptive Systems and Spontaneous Emergence[C]//Curzio A Q, Fortis M. Complexity and industri-al clusters. Physica-Verlag HD, 2002:25-34.
[40] Toroczkai Z. Complexity:A guided tour[J]. Physics Today, 2010, 63(2):47-48.
[41] Farmer J D. Chaotic attractors of an infinite-dimensional dy-namical system[J]. Physica D Nonlinear Phenomena, 1982, 4(3):366-393.
[42] Kitchens B P. Symbolic Dynamics[M]. Berlin:Springer Berlin Heidelberg Publishers, 1998.
[43] Sauer P W, Pai M A. Power system dynamics and stability[M]. New Jersey:Prentice Hall, 1998.
[44] Lansing J S. Complex adaptive systems[J]. Annual Review of Anthropology, 2003, 32(4):183-204.
[45] Galletly J. Evolutionary algorithms in theory and practice:Evo-lution strategies, evolutionary programming, genetic algorithm[M]. Oxford:Oxford University Press, 1998.
[46] Hsu C S. A theory of cell-to-cell mapping dynamical systems[J]. Journal of Applied Mechanics, 1980, 47(4):931-939.
[47] 中国科协学会学术部. 复杂系统建模仿真中的困惑和思考[M]. 北京:中国科学技术出版社, 2012. Department of Societies and Academic, China Association for Science and Technology. Bewilderment and thinking for com-plex system modeling and simulation[M]. Beijing:China Sci-ence and Technology Press, 2012.
[48] Surdu J R, Kittka K. The Deep Green concept[C]//Association for Computing Machinery. Spring simulation multiconference, Ottawa, 2008:623-631.
[49] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[50] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676):354-359.
[51] Silver D, Hubert T, Schrittwieser J, et al. Mastering chess and shogi by self-play with a general reinforcement learning algo-rithm[J]. arXiv:1712.01815v1, 2017.
[52] Moravcík M, Schmid M, Burch N, et al. Deep Stack:Expertlevel artificial intelligence in heads-up no-limit poker[J]. Sci-ence, 2017, 356(6337):508-513.
[53] Brown N, Sandholm T. The superhuman AI for No-Limit pok-er[C]//IJCAI. Twenty-sixth international joint conference on artificial intelligence, Melbourne, 2017:5226-5228.
[54] Nicholas E, David C, Corey S, et al. Genetic fuzzy based artifi-cial intelligence for unmanned combat aerial[J]. Journal of De-fense Management, 2016, 6(1):1-7.
[55] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554
[56] Vincent P, Larochelle H, Bengio Y, et al. Extracting and com-posing robust features with denoising autoencoders[C]//Associ-ation for Computing Machinery. International Conference on Machine Learning, 2008:1096-1103.
[57] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising au-toencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learn-ing Research, 2010, 11(6):3371-3408.
[58] Sutskever I, Hinton G, Taylor G. The recurrent temporal re-stricted boltzmann machine[C]//Association for Computing Ma-chinery. International Conference on Neural Information Pro-cessing Systems. British Columbia, 2008:1601-1608.
[59] Hinton G E. A practical guide to training restricted boltzmann machines[J]. Momentum, 2012, 9(1):599-619.
[60] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//Association for Computing Machin-ery. International Conference on International Conference on Machine Learning. Omnipress, 2010:807-814.
[61] Ranzato M A, Boureau Y L, Lecun Y. Sparse feature learning for deep belief networks[C]//Association for Computing Machinery. International conference on neural information pro-cessing systems. British Colambia, 2007:1185-1192.
[62] Zeiler M D, Fergus R. Visualizing and understanding convolu-tional networks[C]//Springer. European conference on comput-er vision. Cham, 2014:818-833.
[63] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks[C]//IEEE. IEEE International conference on acoustics, speech and signal processing. 2013:6645-6649.
[64] Sundermeyer M, Schlüter R, Ney H. LSTM Neural Networks for Language Modeling[C]//Conference of the international speech communication association, Portland, 2012:601-608.
[65] Greff K, Srivastava R K, Koutnik J, et al. LSTM:A search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(10):2222-2232.
[66] Sutton R S, Barto A G. Reinforcement Learning:An Introduc-tion, Bradford Book[J]. IEEE Transactions on Neural Net-works, 2005, 16(1):285-286.
[67] Watkins C J C H, Dayan P. Q-learning[C]//International con-ference on machine learning, Aberdeen, 1992:279-292.
[68] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. Computer Science. arXiv:1312.5602v1, 2013.
[69] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[70] Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3/4):229-256.
[71] Coulom R. Efficient selectivity and backup operators in mon-te-carlo tree search[J]. Lecture Notes in Computer Science, 2006, 4630:72-83.
[72] Kulkarni T D, Narasimhan K R, Saeedi A, et al. Hierarchical deep reinforcement learning:Integrating temporal abstraction and intrinsic motivation[C]//Proceedings of the Conference on Neural Information Processing Systems. Barcelona, 2016:3675-3683
[73] Taylor M E, Stone P. Behavior transfer for value-functionbased reinforcement learning[C]//International joint confer-ence on autonomous agents and multiagent systems. ACM, 2005:53-59.
[74] Tampuu A, Matiisen T, Kodelja D, et al. Multi-Agent coopera-tion and competition with deep reinforcement learning. arXiv:1511.08779, 2015.
[75] Oh J, Chockalingam V, Singh S, et al. Control of memory, ac-tive perception, and action in Minecraft[C]//Proceedings of the International Conference on Machine Learning. New York, 2016:2790-2799.
[76] Vinyals O, Ewalds T, Bartunov S, et al. StarCraft Ⅱ:A new challenge for reinforcement learning[J]. arXiv:1708.04782v1, 2017.
[77] Wen C. Exploration and study on similarity theory[J]. Journal of Systems Engineering & Electronics, 1992, 3(1):9-20.
[78] Shwartz-Ziv R, Tishby N. Opening the black box of deep neu-ral networks via Information[J]. arXiv:1703.00810, 2017.