专题论文

基于功率谱熵特征提取的脑电波大脑年龄预测

  • 徐伟 ,
  • 姜罗罗 ,
  • 汪秉宏
展开
  • 1. 温州大学数理与电子信息工程学院, 温州 325035;
    2. 中国科学技术大学近代物理系, 合肥 230026
徐伟,硕士研究生,研究方向为模式识别与数据挖掘,电子信箱:joey_boyi@foxmail.com

收稿日期: 2018-01-30

  修回日期: 2018-04-08

  网络出版日期: 2018-04-27

基金资助

浙江省自然科学基金项目(LY17F030005)

The brain age prediction based on the power spectrum entropy feature extraction

  • XU Wei ,
  • JIANG Luoluo ,
  • WANG Binghong
Expand
  • 1. College of Mathematics Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China;
    2. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

Received date: 2018-01-30

  Revised date: 2018-04-08

  Online published: 2018-04-27

摘要

大脑会随着年龄的增加而出现功能衰退,通过决策实验获取年轻人和中老年人的脑电信号,可以定量分析大脑随年龄增长而出现的变化。提出了一种基于熵的脑电波刻画方法,并利用机器学习的方法能够比较准确地预测人的大脑年龄。研究表明,脑电波功率谱熵(PSE)具有良好的时域分辨能力和更准确的区分效果,年轻人在做决策时的脑电波功率谱熵的分布是大于中老年人的,即年轻人所产生的脑电波信息量更大。此外,支持向量机(SVM)的分类效果优于随机森林(RF)方法,最高平均精度达88.02%,比随机森林高出2.66%。通过基尼指数对特征重要性排序,还发现决策过程中左眼电区域、大脑的颞和中央区域的决策反应差异很大,分类器更容易在这些特征区域做出更好的分类。

本文引用格式

徐伟 , 姜罗罗 , 汪秉宏 . 基于功率谱熵特征提取的脑电波大脑年龄预测[J]. 科技导报, 2018 , 36(8) : 40 -47 . DOI: 10.3981/j.issn.1000-7857.2018.08.004

Abstract

The brain activity sees a functional decline in the aging process. The Electroencephalogram (EEG) signals of young and elderly people are obtained by the decision-making experiment to be used to quantitatively analyze the changes of the brain with age. This paper presents an entropy-based characterization method of the EEG, which can accurately predict the human brain age by the machine learning method. The results show that there is a rich performance with the power spectrum entropy (PSE) in the time-resolution ability and the effect of the accurate differentiation. The distribution of the entropy of the young people in a decision-making process has a greater intensity than that of the elderly. In other words, the amount of information of the brain generated by young people is larger than that of the elderly. In addition, the support vector machine (SVM) is superior to the random forest (RF) method, since the highest average accuracy (ACC) is 88.02% and is 2.66% higher than that of the RF method. It is also found that a great difference is observed in the responses of the decision-making, especially in the left EOG, temporal and central regions of the brain, which can be more easily classified by the classifiers.

参考文献

[1] Swerdlow R H. Brain aging, Alzheimer's disease, and mitochondria[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2011, 1812(12):1630-1639.
[2] Luders E, Cherbuin N, Gaser C. Estimating brain age using high-resolution pattern recognition:Younger brains in longterm meditation practitioners[J]. Neuroimage, 2016, 134:508-513.
[3] Vysata O, Kukal J, Prochazka A, et al. Age-related changes in EEG coherence[J]. Neurologia i Neurochirurgia Polska, 2014, 48(1):35-38.
[4] van Albada S J, Kerr C C, Chiang A K I, et al. Neurophysiological changes with age probed by inverse modeling of EEG spectra[J]. Clinical Neurophysiology, 2010, 121(1):21-38.
[5] Pace-Schott E F, Spencer R M C. Age-related changes in the cognitive function of sleep[M]//Green A M, Chapman E C, Kalaska J F, et al. Progress in Brain Research. Amsterdam:Elsevier, 2011:75-89.
[6] Cirelli L K, Bosnyak D, Manning F C, et al. Beat-induced fluctuations in auditory cortical beta-band activity:Using EEG to measure age-related changes[J]. Frontiers in Psychology, 2014, 5:742.
[7] Dosenbach N U F, Nardos B, Cohen A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010, 329(5997):1358-1361.
[8] Cole J H, Leech R, Sharp D J. Prediction of brain age suggests accelerated atrophy after traumatic brain injury[J]. Annals of Neurology, 2015, 77(4):571-581.
[9] Gur R C, Calkins M E, Satterthwaite T D, et al. Neurocognitive growth charting in psychosis spectrum youths[J]. JAMA Psychiatry, 2014, 71(4):366-374.
[10] Federmeier K D, Kutas M, Schul R. Age-related and individual differences in the use of prediction during language comprehension[J]. Brain and Language, 2010, 115(3):149-161.
[11] Meier T B, Desphande A S, Vergun S, et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks[J]. Neuroimage, 2012, 60(1):601-613.
[12] 綦宏志, 程龙龙, 陈彬津, 等. 想象动作中动态脑电的信息熵研究[J]. 中国生物医学工程学报, 2007, 26(1):74-77. Yan Hongzhi, Cheng Longlong, Chen Binjin, et al. Information entropy of dynamic EEG in imaginary movements[J]. Chinese Journal of Biomedical Engineering, 2007, 26(1):74-77.
[13] 周酥. 基于功率谱信息熵的异常心音识别[J]. 中国医学物理学杂志, 2014, 31(3):4933-4935. Zhou Su. Abnormal heart sound recognition based on power spectrum information entropy[J]. Chinese Journal of Medical Physics, 2014, 31(3):4933-4935.
[14] 任亚莉. 基于功率谱熵和频带能量的运动意识任务分类研究[J]. 计算机应用与软件, 2010, 27(12):105-107. Ren Yali. Research on task classification of motion awareness based on power spectrum entropy and frequency band energy[J]. Journal of Computer Applications and Software, 2010, 27(12):105-107.
[15] 费成巍, 白广忱, 李晓颖, 等. 基于过程功率谱熵SVM的转子振动故障诊断方法[J]. 推进技术, 2012, 33(2):293-298. Fei Chengwei, Bai Guangchen, Li Xiaoying, et al. Rotor vibration fault diagnosis method based on process power spectral entropy SVM[J]. Propulsion Technology, 2012, 33(2):293-298.
[16] 王凯明, 钟宁, 周海燕, 等. 基于改进功率谱熵的抑郁症脑电信号活跃性研究[J]. 物理学报, 2014, 63(17):178701-178708. Wang Kaiming, Zhong Ning, Zhou Haiyan, et al. Study on the activity of EEG signals in depression based on improved power spectral entropy[J]. Acta Physica Sinica, 2014, 63(17):178701-178708.
[17] Sun Y. EEG signal analysis by using SVM and ELM[D]. Northridge:California State University, Northridge, 2015.
[18] Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[19] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2):102.
[20] Gray R M. Entropy and information theory[M]. New York:Springer Science & Business Media, 2011.
[21] Chang Y W, Hsieh C J, Chang K W, et al. Training and testing low-degree polynomial data mappings via linear SVM[J]. Journal of Machine Learning Research, 2010, 11:1471-1490.
[22] Biau G. Analysis of a random forests model[J]. Journal of Machine Learning Research, 2012, 13:1063-1095.
[23] Borra S, Ciaccio A D. Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods[J]. Computational statistics & data analysis, 2010, 54(12):2976-2989.
[24] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python[J]. Journal of machine learning research, 2011, 12:2825-2830.
文章导航

/