[1] Feynman R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6/7):467-488.
[2] Deutsch D. Quantum theory, the Church-turing principle and the universal quantum computer[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1985, 400(1818):97-117.
[3] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London, Series A, 1992, 439(1907):553-558.
[4] Bernstein E, Vazirani U. Quantum complexity theory[C]//STOC'93:Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing. New York:ACM, 1993:11-20.
[5] Simon D R. On the power of quantum computation[C]//Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science. Piscataway, NJ:IEEE, 1994:116-123.
[6] Shor P W. Algorithms for quantum computation:Discrete logarithms and factoring[C]//Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science. Piscataway, NJ:IEEE, 1994:124-134.
[7] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5):1484-1509.
[8] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2):325-328.
[9] Raussendorf R, Browne D E, Briegel H J. Measurement based quantum computation on cluster states[J]. Physical Review A, 2003, doi:10.1103/PhysRevA.68.022312.
[10] Farhi E, Goldstone J, Gutmann S, et al. Quantum computation by adiabatic evolution[J/OL].[2017-04-30]. http://www.physast.uga.edu/~mgeller/quant-ph%200001106.pdf.
[11] Nayak C, Simon S H, Stern A, et al. Non-abelian anyons and topological quantum computation[J]. Review of Modern Physics, 2007, 80(3):1083-1159.
[12] Pachos J K. Introduction to topological quantum computation[M]. Cambridge:Cambridge University Press, 2012.
[13] Xu J S, Sun K, Han Y J, et al. Simulating the exchange of Majorana zero modes with a photonic system[J]. Nature Communications, 2016, 7(2):13194.
[14] Xu J S, Sun K, Pachos J K, et al. Experimental simulation of Majorana-based quantum computation[J]. Quantum Physics, arXiv:1702.084-07.
[15] Divincenzo, David P. The physical implementation of quantum computation[J]. Fortschritte Der Physik, 2000, 48(9-11):771-783.
[16] Nigg D, Müller M, Martinez E A, et al. Quantum computations on a topologically encoded qubit[J]. Science, 2014, 345(6194):302.
[17] Monz T, Schindler P, Barreiro J T, et al. 14-Qubit entanglement:Creation and coherence[J]. Physical Review Letters, 2011, 106(13):130506.
[18] Jurcevic P, Lanyon B P, Hauke P, et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system[J]. Nature, 2014, 511(7508):202.
[19] Chan M, Nicklason F, Vial J H. Scaling the ion trap quantum processor[J]. Science, 2013, 339(6124):1164-1169.
[20] Harty T P, Allcock D T C, Ballance C J, et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit[J]. Physical Review Letters, 2014, 113(22):220501.
[21] Ballance C J, Harty T P, Linke N M, et al. High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions[J]. Physical Review Letters 2014, doi:10.1103/PhysRevLett.117.060504.
[22] Campbell W C, Mizrahi J, Quraishi Q, et al. Ultrafast gates for single atomic qubits.[J]. Physical Review Letters, 2010, 105(9):212-217.
[23] Myerson A, Szwer D, Webster S, et al. High-fidelity readout of trappedion qubits.[J]. Physical Review Letters, 2008, 100(20):200502.
[24] Stute A, Casabone B, Brandstätter B, et al. Quantum-state transfer from an ion to a photon[J]. Nature Photonics, 2013, 7(3):219.
[25] Ristè D, DiCarlo L. Digital feedback in superconducting quantum circuits[J/OL].[2017-04-30]. http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1508.01385v1.pdf.
[26] Barends R, Kelly J, Megrant A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497):500.
[27] Macklin C, O'Brien K, Hover D, et al. A near-quantum-limited Josephson traveling-wave parametric amplifier[J]. Science, 2015, 350(6258):307-310.
[28] Regal C, Andrews R, Peterson R, et al. Bidirectional and efficient conversion between microwave and optical light[J]. Nature Physics, 2014, 10(4):321-326.
[29] Calderbank A R, Shor P W. Good quantum error-correcting codes exist[J]. Physical Review A, 1995, 54(2):1098-1105.
[30] Steane A M. Error correcting codes in quantum theory[J]. Physical Review Letters, 1996, 77(5):793.
[31] Aharonov D, Ben-Or M. Fault tolerant quantum computation with constant error[J]. Quantum Physics, arXiv:quant-ph/9611025.
[32] Knill E, Laflamme R, Zurek W H. Resilient quantum computation:Error models and thresholds[J]. Proceedings Mathematical Physical & Engineering Sciences, 1997, 454(1969):365-384.
[33] Gottesman D. Stabilizer codes and quantum error correction[J]. Thesis Preskill, 1997, arXiv:quant-ph/9705052.
[34] Labaziewicz J, Ge Y, Antohi P, et al. Suppression of heating rates in cryogenic surface-electrode ion traps[J]. Physical Review Letters, 2008, 100(1):013001.
[35] Brownnutt M, Kumph M, Rabl P, et al. Ion-trap measurements of electric-field noise near surfaces[J]. Reviews of Modern Physics, 2015, 87(4), doi:10.1103/RevModPhys.87.1419.
[36] Tillmann M, Dakic B, Heilmann R, et al. Experimental boson sampling[J]. Nature Photonics, 2012, 7(7):540-544.
[37] Spagnolo N, Vitelli C, Bentivegna M, et al. Experimental validation of photonic boson sampling[J]. Nature Photonics, 2013, 8(11):6527-6532.