综述文章

量子计算原理及研究进展

  • 韩永建 ,
  • 李传锋 ,
  • 郭光灿
展开
  • 中国科学技术大学;中国科学院量子信息重点实验室, 合肥 230026
韩永建,教授,研究方向为量子信息,电子信箱:smhan@ustc.edu.cn

收稿日期: 2017-07-26

  修回日期: 2017-11-06

  网络出版日期: 2017-12-16

基金资助

国家重点研发计划项目(2017YFA0304100)

The principle and development of quantum computation

  • HAN Yongjian ,
  • LI Chuanfeng ,
  • GUO Guangcan
Expand
  • CAS Key Lab of Quantum Information, University of Science and Technology of China, Hefei 230026, China

Received date: 2017-07-26

  Revised date: 2017-11-06

  Online published: 2017-12-16

摘要

量子计算机是量子力学与计算问题相结合的产物,是近几年的研究热点,引起了广泛的社会关注。本文回顾量子计算机的发展,介绍了量子算法和量子计算模型,并以离子阱和超导线路为例阐述了量子计算机的物理实现,然后介绍了为了克服消相干而发展出的量子编码,以玻色取样为例讨论了量子霸权。展望未来,近期内可以展示量子霸权,进而实现解决特定问题的量子模拟器,但是普适的量子计算机的研制仍然需要很长的时间。

本文引用格式

韩永建 , 李传锋 , 郭光灿 . 量子计算原理及研究进展[J]. 科技导报, 2017 , 35(23) : 70 -75 . DOI: 10.3981/j.issn.1000-7857.2017.23.011

Abstract

Quantum computer is the combination of quantum mechanics and computing problem. It is a hot research topic of recent years and receives much attention from the society. In this paper we briefly review the principle and development of quantum computer. First, we introduce quantum algorithms and computing models, and explain physical implementation of quantum computer by taking ion trap and superconducting circuit as examples. Then we introduce quantum codes used to overcome decoherence. We also discuss quantum supremacy with Boson sampling as example. As we look into the future of quantum computers, we think quantum supremacy may be demonstrated in a few years and then quantum simulators to solve special problems. As for universal quantum computer, however, it may still need a long time.

参考文献

[1] Feynman R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6/7):467-488.
[2] Deutsch D. Quantum theory, the Church-turing principle and the universal quantum computer[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1985, 400(1818):97-117.
[3] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London, Series A, 1992, 439(1907):553-558.
[4] Bernstein E, Vazirani U. Quantum complexity theory[C]//STOC'93:Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing. New York:ACM, 1993:11-20.
[5] Simon D R. On the power of quantum computation[C]//Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science. Piscataway, NJ:IEEE, 1994:116-123.
[6] Shor P W. Algorithms for quantum computation:Discrete logarithms and factoring[C]//Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science. Piscataway, NJ:IEEE, 1994:124-134.
[7] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5):1484-1509.
[8] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2):325-328.
[9] Raussendorf R, Browne D E, Briegel H J. Measurement based quantum computation on cluster states[J]. Physical Review A, 2003, doi:10.1103/PhysRevA.68.022312.
[10] Farhi E, Goldstone J, Gutmann S, et al. Quantum computation by adiabatic evolution[J/OL].[2017-04-30]. http://www.physast.uga.edu/~mgeller/quant-ph%200001106.pdf.
[11] Nayak C, Simon S H, Stern A, et al. Non-abelian anyons and topological quantum computation[J]. Review of Modern Physics, 2007, 80(3):1083-1159.
[12] Pachos J K. Introduction to topological quantum computation[M]. Cambridge:Cambridge University Press, 2012.
[13] Xu J S, Sun K, Han Y J, et al. Simulating the exchange of Majorana zero modes with a photonic system[J]. Nature Communications, 2016, 7(2):13194.
[14] Xu J S, Sun K, Pachos J K, et al. Experimental simulation of Majorana-based quantum computation[J]. Quantum Physics, arXiv:1702.084-07.
[15] Divincenzo, David P. The physical implementation of quantum computation[J]. Fortschritte Der Physik, 2000, 48(9-11):771-783.
[16] Nigg D, Müller M, Martinez E A, et al. Quantum computations on a topologically encoded qubit[J]. Science, 2014, 345(6194):302.
[17] Monz T, Schindler P, Barreiro J T, et al. 14-Qubit entanglement:Creation and coherence[J]. Physical Review Letters, 2011, 106(13):130506.
[18] Jurcevic P, Lanyon B P, Hauke P, et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system[J]. Nature, 2014, 511(7508):202.
[19] Chan M, Nicklason F, Vial J H. Scaling the ion trap quantum processor[J]. Science, 2013, 339(6124):1164-1169.
[20] Harty T P, Allcock D T C, Ballance C J, et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit[J]. Physical Review Letters, 2014, 113(22):220501.
[21] Ballance C J, Harty T P, Linke N M, et al. High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions[J]. Physical Review Letters 2014, doi:10.1103/PhysRevLett.117.060504.
[22] Campbell W C, Mizrahi J, Quraishi Q, et al. Ultrafast gates for single atomic qubits.[J]. Physical Review Letters, 2010, 105(9):212-217.
[23] Myerson A, Szwer D, Webster S, et al. High-fidelity readout of trappedion qubits.[J]. Physical Review Letters, 2008, 100(20):200502.
[24] Stute A, Casabone B, Brandstätter B, et al. Quantum-state transfer from an ion to a photon[J]. Nature Photonics, 2013, 7(3):219.
[25] Ristè D, DiCarlo L. Digital feedback in superconducting quantum circuits[J/OL].[2017-04-30]. http://lib-arxiv-008.serverfarm.cornell.edu/pdf/1508.01385v1.pdf.
[26] Barends R, Kelly J, Megrant A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497):500.
[27] Macklin C, O'Brien K, Hover D, et al. A near-quantum-limited Josephson traveling-wave parametric amplifier[J]. Science, 2015, 350(6258):307-310.
[28] Regal C, Andrews R, Peterson R, et al. Bidirectional and efficient conversion between microwave and optical light[J]. Nature Physics, 2014, 10(4):321-326.
[29] Calderbank A R, Shor P W. Good quantum error-correcting codes exist[J]. Physical Review A, 1995, 54(2):1098-1105.
[30] Steane A M. Error correcting codes in quantum theory[J]. Physical Review Letters, 1996, 77(5):793.
[31] Aharonov D, Ben-Or M. Fault tolerant quantum computation with constant error[J]. Quantum Physics, arXiv:quant-ph/9611025.
[32] Knill E, Laflamme R, Zurek W H. Resilient quantum computation:Error models and thresholds[J]. Proceedings Mathematical Physical & Engineering Sciences, 1997, 454(1969):365-384.
[33] Gottesman D. Stabilizer codes and quantum error correction[J]. Thesis Preskill, 1997, arXiv:quant-ph/9705052.
[34] Labaziewicz J, Ge Y, Antohi P, et al. Suppression of heating rates in cryogenic surface-electrode ion traps[J]. Physical Review Letters, 2008, 100(1):013001.
[35] Brownnutt M, Kumph M, Rabl P, et al. Ion-trap measurements of electric-field noise near surfaces[J]. Reviews of Modern Physics, 2015, 87(4), doi:10.1103/RevModPhys.87.1419.
[36] Tillmann M, Dakic B, Heilmann R, et al. Experimental boson sampling[J]. Nature Photonics, 2012, 7(7):540-544.
[37] Spagnolo N, Vitelli C, Bentivegna M, et al. Experimental validation of photonic boson sampling[J]. Nature Photonics, 2013, 8(11):6527-6532.
文章导航

/