[1] Campbell M, Jr A J H, Hsu F H. Deep Blue[J]. Artificial Intelligence, 2002, 134(1/2):57-83.
[2] Silver D, Huang A. Mastering the game of go with deep neural net-works and tree search[J]. Nature, 2016(529):484-489.
[3] Allis L V. Searching for solutions in games and artifcial intelligence[D]. Maastricht Netherlands:University Limburg, 1994.
[4] Newnan M E J. The structure and function of complex networks[J]. Si-am Review, 2006, 45(2):167-256.
[5] Wang F Y, Zhang J J, Zheng X H. Where does AlphaGo go:From church turing thesis to AlphaGo thesis and beyond[J]. IEEE/CAAJour-nal of Automatica Sinica, 2016, 3(2):113-120.
[6] Hopfield J J. Neural networks and physical systems with emergent col-lective computational abilities[J]. Proceedings of the National Academy of Sciences. 1982,79(8):2554-2558.
[7] Andrade M A, Chacón P, Merelo J J, et al. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsu-pervised learning neural network[J]. Protein Engineering, 1993, 6(4):383-390.
[8] Anguita D, Gomes B A. Mixing floating and fixed-point formats for neu-ral network learning on neuroprocessors[J]. Microprocessing & Micropro-gramming, 1996, 41(10):757-769.
[9] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[10] Schölkopf B, Platt J, Hofmann T. Greedy layer-wise training of deep networks[C]//International Conference on Neural Information Process-ing Systems. Cambridge:MIT Press, 2006:153-160.
[11] Arel I, Rose D C, Karnowski T P. Deep machine learning:A new fron-tier in artificial intelligence research[J]. IEEE Computational Intelli-gence Magazine, 2010, 5(4):13-18.
[12] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[13] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. South Lake Tahoe, Nevada, USA:Curran Associates Inc, 2012:1097-1105.
[14] Jaderberg M, Simonyan K, Vedaldi A, et al. Reading Text in the Wild with Convolutional Neural Networks[J]. International Journal of Com-puter Vision, 2016, 116(1):1-20.
[15] Clark C, Storkey A. Teaching deep convolutional neural networks to play go[J]. Eprint Arxiv, 2015:1766-1774.
[16] Tesauro G, Galperin G R. On-line policy improvement using montecarlo search[J]. Advances in Neural Information Processing Systems, 1996(9):1068-1074.
[17] Browne C B, Powley E, Whitehouse D, et al. A survey of monte carlo tree search methods[J]. IEEE Transactions on Computational Intelli-gence & Ai in Games, 2012, 4(1):1-43.
[18] 陶九阳, 吴琳, 胡晓峰. AlphaGo技术原理分析及人工智能军事应用展望[J]. 指挥与控制学报, 2016, 2(2):114-120. Tao Jiuyang, Wu Lin, Hu Xiaofeng. Principle analysis on AlphaGo and perspectives in military application of artificial intelligence[J]. Journal of Command and Control, 2016, 2(2):114-120.
[19] Sutton R, Barto A. Reinforcement learning:An introduction[M]. Massa-chusetts:MIT Press, 1998.
[20] Kimura H, Miyazaki K, Kobayashi S. Reinforcement learning in POM-DPs with function approximation[C]//Fourteenth International Confer-ence on Machine Learning. Sydney:Morgan Kaufmann Publishers Inc. 1997:152-160.
[21] Hasselt H V, Guez A, Silver D. Deep reinforcement learning with dou-ble Q-learning[C]//Proceedings of the 30th AAAI Conference on Artifi-cial Intelligence. Phoenix, Arizona USA:American Institute of Aero-nautics and Astronautics, 2016.
[22] Alberts D S. The agility advantage:A survival guide for complex enter-prises and endeavors[M]. Washington:CCRP, 2011:23-71.
[23] Peter P P. The art of wargaming[M]. Annapolis Maryland:Naval Insti-tute Press, 1990:1-21.
[24] Peter P P. Ed Mcgrady. Why wargaming works[J]. Rhode Island:Na-val War College Review, 2011, 64(3):111-133.
[25] Blank Dennis. Military wargaming:A commercial battlefield[J]. Jane's Defence Weekly, 2004(2):5-9.
[26] Rose D. Designing a system on system wargame[R]. Ohio:US Air Force Research Laboratory, 2006.
[27] 胡晓峰, 司光亚, 吴琳, 等. 战争模拟原理与系统[M]. 北京:国防大学出版社, 2009. Hu Xiaofeng, Si Guangya, Wu Lin, et al. War gaming & simulation principle and system[M]. Beijing:National Defense University Press, 2009.
[28] Caffrey J, Mattew B. Intelligent computing and wargaming[C]//The In-ternational Society for Optical Engineering Orlando, Florida:The Soci-ety of Photo-Optical Instrumentation Engineers, 2011:5-9.
[29] Musman S, Temin A. Evaluating the impact of cyber attacks on mis-sions[J]. M&S Journal, 2013(7):25-36.
[30] Endsley M. Toward a theory of situation awareness in dynamic systems[J]. Human Factors, 1995, 37(1):35-64.
[31] Oosthuizen R, Pretorius L. System dynamics modelling of situation awareness[C]//Military Communications and Information Systems Con-ference. Piscataway, NJ:IEEE, 2015:1-6.
[32] Tadda G, Salerno J J. Realizing situation awareness within a cyber en-vironment[J]. Proceedings of Spie, 2006, Doi:10.1117/12.665763.
[33] Sutton R S, Barto A G. Reinforcement learning:An introduction[J]. IEEE Transactions on Neural Networks, 2005, 16(1):285-286.
[34] Kimura H, Miyazaki K, Kobayashi S. Reinforcement learning in POM-DPs with function approximation[C]//Fourteenth International Confer-ence on Machine Learning. Netherlands:Morgan Kaufmann Publish-ers Inc. 1997:152-160.
[35] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[36] Bellemare M G, Veness J, Investigating contingency awareness using Atari 2600 games[C]//AAAI Conference on Artificial Intelligence. Washington:AAAI, 2013:864-871.
[37] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep rein-forcement learning[J]. Computer Science, 2013, arXiv:1312.5602.
[38] Ji S, Xu W, Yang M, et al. 3D convolutional neural networks for hu-man action Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231.
[39] Jayanth Koushik. Understanding convolutional neural networks[J]. Computer Science, 2016, arXiv:1605.09081v1.
[40] Pan S, Yang Q. A survey on transfer learning[J]. Knowledge and Data Engineering, IEEE Transactions on, 2010, 22(10):1345-1359.
[41] Lake B M, Salakhutdinov R, Tenenbaum J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266):1332-1338.
[42] Assael J A M, Wang Z, Shahriari B, et al. Heteroscedastic treed bayes-ian optimisation[J]. Computer Science, 2014, arXiv:1410.7172.
[43] Heinrich J, Silver D. Deep reinforcement learning from self-play in imperfect-information games[J]. Computer Science, 2016, arXiv:1603. 01121v1.
[44] Iii T J L, Epelman M A, Smith R L. A fictitious play approach to large-scale optimization[J]. Operations Research, 2003, 53(3):477-489.
[45] Ponsen M, De Jong S, Lanctot M. Computing approximate Nash equi-libria and robust best-responses using sampling[J]. Journal of Artifi-cial Intelligence Research, 2011, 42(1):575-605.
[46] Ernest N, Carroll D, Schumacher C, et al. Genetic fuzzy based artifi-cial intelligence for unmanned combat aerial[J]. Journal of Defense Management, 2016, 6(1):1-7.
[47] Cordon O. A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems:Designing interpretable ge-netic fuzzy systems[J]. International Journal of Approximate Reason-ing, 2011(52):894-913.