专题论文

高分辨率宽幅星载SAR海洋监视与信息反演

  • 邓云凯 ,
  • 禹卫东 ,
  • 王宇
展开
  • 中国科学院电子学研究所航天微波遥感系统部, 北京 100190
邓云凯,研究员,研究方向为星载SAR系统总体技术,电子信箱:ykdeng@mail.ie.ac.cn

收稿日期: 2017-09-25

  修回日期: 2017-10-10

  网络出版日期: 2017-10-31

基金资助

国家重点研发计划项目(2017YFB0502700)

Ocean surveillance and information extraction based on HRWS spaceborne SAR system

  • DENG Yunkai ,
  • YU Weidong ,
  • WANG Yu
Expand
  • Department of Space Microwave Remote Sensing System, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2017-09-25

  Revised date: 2017-10-10

  Online published: 2017-10-31

摘要

为了满足对海洋监视日益增长的需求,星载合成孔径雷达(SAR)系统应具备高分辨率宽测绘带能力。高分宽幅星载SAR系统不仅能够获得海洋的环境参数(如洋流、内波、风场、海浪等),还能够获得海面上各种目标(如舰船、溢油、海冰等)的信息,为国民经济建设和国防建设提供信息来源。本文讨论了星载SAR系统在海洋监视中的应用,论述了用于海洋监视的星载SAR系统关键技术,总结了未来海洋监视星载SAR的发展方向。

本文引用格式

邓云凯 , 禹卫东 , 王宇 . 高分辨率宽幅星载SAR海洋监视与信息反演[J]. 科技导报, 2017 , 35(20) : 69 -76 . DOI: 10.3981/j.issn.1000-7857.2017.20.007

Abstract

In order to satisfy the increasing demand for ocean surveillance, the spaceborne SAR system should have the capacity of High Resolution and Wide Swath (HRWS). The HRWS spaceborne SAR system can not only obtain the ocean environment parameters (such as current, wave, wide speed and direction and internal wave), but also extract a variety of target information (such as ships, oil spills and sea ice) on the surface of the sea. Therefore, the HRWS spaceborne SAR system plays an important role in the national economic development and the national defense construction. This paper reviews the applications of the spaceborne SAR system in ocean surveillance and the key techniques of the spaceborne SAR system for ocean surveillance. Finally, a possible HRWS SAR satellite constellation is designed, which can meet the demand of ocean surveillance in the future.

参考文献

[1] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1):1-10. Deng Yunkai, Zhao Fengjun, Wang Yu. Brief analysis on the develop-ment and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1):1-10.
[2] Wang R, Loffeld O, Nies H, et al. Frequency-domain bistatic SAR pro-cessing for spaceborne/airborne configuration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1329-1345.
[3] Cumming L G, Wong F H. 合成孔径雷达成像——算法与实现[M]., 洪文, 胡东辉, 译. 北京:电子工业出版社, 2006. Cumming L G, Wong F H. Digital processing of synthetic Aperture Ra-dar Data:Algorithms and implementation[J]. Hong Wen, Hu Donghui, trans. Beijing:Publishing House of Electronics, 2006.
[4] Wang R, Deng Y K, Loffeld O, et al. Processing the azimuth-variant bi-static SAR data by using mono static imaging algorithms based on 2D principle of stationary phase[J]. IEEE Transanctions on Geoscience Re-mote Sensing, 2011, 49(10):3504-3520.
[5] Suchandt S, Runge H, Breit H, et al. Automatic extraction of traffic flows using terraSAR-X along-track interferometry[J]. IEEE Transanc-tions on Geoscience Remote Sensing, 2010, 48(2):807-819.
[6] Cerutti-Maori D, Sikaneta I, Gierull C. Ship detection with spaceborne multi-channel SAR/GMTI radars[C]//European Conference on Synthetic Aperture Radar. Berlin:VDE, 2012:400-403.
[7] 杨劲松, 王隽, 任林. 高分三号卫星对海洋内波的首次定量遥感[J]. 海洋学报, 2017, 39(1):148. Wang Jinsong, Wang Jun, Ren Lin. High three satellite on the first quantitative remote sensing of ocean internal waves[J]. Acta Oceanologi-ca Sinica, 2017, 39(1):148.
[8] 中国科学院电子学研究所航天微波遥感系统部. 世界星载SAR系统调研报告[R]. 北京:中国科学院电子学研究所, 2010. Department of Space Microwave Remote Sensing System, Institute of Electronics, Chinese Academy Science. The spaceborne SAR system re-search report[R]. Beijing:Institute of Electronics, Chinese Academy Sci-ence, 2010.
[9] 范开国, 傅斌, 黄韦艮, 等. 浅海水下地形的SAR遥感仿真研究[J]. 海洋学研究, 2009, 27(2):79-83. Fan Kaiguo, Fu Bin, Huang Wengen, et al. Simulation study on SAR shallow water bathymetry[J]. Journal of Marine Sciences, 2009, 27(2):79-83.
[10] Baumgartner S V, Krieger G. Simultaneous high-resolution wideswath SAR imaging and ground moving target indication:Processing approaches and system concepts[J]. Journal of Electromagnetic Waves and Applications, 2015, 8(11):5015-5029.
[11] on based on coherence images derived from cross correlation of multi-look SAR images[J]. IEEE Geoscience & Remote Sensing Letters, 2004, 1(3):184-187.
[12] Gao G, Liu L, Zhao L J, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Geoscience & Remote Sensing Letters, 2009. 47(6):1685-1697.
[13] 邢相薇, 计科峰, 康利鸿, 等. HRWSSAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1):107-121. Xing Xiangwei, Ji Kefeng, Kang Lihong, et al. Review of ship surveil-lance technologies based on high-resolution wide-swath Synthetic Ap-erture Radar imaging[J]. Journal of Radars, 2015, 4(1):107-121.
[14] 赵志. 基于星载SAR与AIS综合的舰船目标监视关键技术研究[D]. 长沙:国防科学技术大学, 2013. Zhao Zhi. Spaceborne SAR and AIS comprehensive research on the key technologies of ship target surveillance[D]. Changsha:National University of Defence Technolog, 2013.
[15] 唐沐恩, 林挺强, 文贡坚. 遥感图像中舰船检测方法综述[J]. 计算机应用研究, 2011, 28(1):29-36. Tang Muen, Lin Tingqiang, Wen Gongjian. Overview of ship detection methods in remote sensing image[J]. Application research of Comput-ers, 2011, 28(1):29-36.
[16] 朱宗斌. SAR海洋溢油监测多源信息融合研究[D]. 青岛:中国海洋大学, 2015. Zhu Zongbin. SAR marine spilled oil monitoring research on multisource information fusion[D]. Qingdao:Ocean University of China, 2015.
[17] 龚宁. 海面溢油的微波散射模型研究[D]. 成都:电子科技大学, 2016. Gongning. Study on microwave scattering model of marine oil spil[D]. Chengdu:University of Electronic Science and Technology of China, 2016.
[18] 刘朋. SAR海面溢油检测与识别方法研究[D]. 青岛:中国海洋大学, 2012. Liu Peng. Research on detection and recognition method of oil spill at sea SAR[D]. Qingdao:Ocean University of China, 2012.
[19] 李旭坤. 多波段全极化SAR海冰分类研究[D]. 大连:大连理工大学, 2013. Li Xukun. Study on the classification of multi band polarization SAR sea ice[D]. Dalian:Dalian University of Technology, 2013.
[20] 常灿灿. ScanSAR模式海冰图像分割[D]. 合服:合肥工业大学, 2013. Chang Cancan. ScanSAR sea ice image segmentation[D]. Hefei:Hefei Polytechnic University, 2013.
[21] Romeiser R, Thompson D R. Numerical study on the along-track inter-ferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transanctions on Geoscience Remote Sensing, 2000, 38(1):446-458.
[22] Romeiser R, Runge H, Suchandt S, et al. Current measurements in riv-ers by spaceborne along-track InSAR[J]. IEEE Transanctions on Geo-science Remote Sensing, 2007, 45(12):4019-4031.
[23] 常亮, 高郭平, 郭立新. 星载SAR海洋表层流场反演综述[J]. 海洋科学进展, 2015, 33(1):107-117. Chang Liang, Gao Guoping, Guo Lixin. Review on ocean surface cur-rent field measurement by space-borne SAR[J]. Advances in Marine Science, 2015, 33(1):107-117.
[24] 李慧敏. 基于多普勒法的SAR海表流场反演算法研究[D]. 青岛:中国海洋大学, 2015. Li Huimin. Study on flow field inversion algorithm of SAR sea surface based on Doppler method[D]. Qingdao:Ocean University of China, 2015.
[25] 吴中鼎, 李占桥. 星载SAR遥感在海洋水文观测中的应用探讨[J]. 海洋测绘, 2001(2):48-51. Wu Zhongding, Li Zhanqiao. Application of spaceborne SAR remote sensing in marine hydrographic observation[J]. Hydrographic Survey-ing and Charting, 2001(2):48-51.
[26] 林珲, 范开国, 申辉, 等. 星载SAR海洋内波遥感研究进展[J]. 地球物理学进展, 2010, 25(3):1081-1091. Lin Hui. Fan Kaiguo, Shen Hui, et al. Review on remote sensing of oceanic internal wave by space-borne SAR[J]. Progress in Geophys-ics, 2010, 25(3):1081-1091.
[27] 范开国, 黄韦艮, 甘锡林, 等. SAR海洋内波表层流反演方法探讨[J]. 遥感学报, 2010, 14(1):122-130. Fan Kaiguo, Huang Weigen, Gan Xilin, et al. Retrieving internal wave surface currents from SAR image[J]. Journal of Remote Sensing, 2010, 14(1):122-130.
[28] 陈捷, 陈标, 陶荣华, 等. SAR图像海洋内波参数自动提取方法[J]. 海洋技术学报, 2014, 33(6):20-27. Chen Jie, Chen Biao, Tao Ronghua, et al. An automatic extraction method of SAR images of ocean internal wave parameters[J].J ournal of Ocean Technology, 2014, 33(6):20-27.
[29] 刘丽娜, 陈曦, 赵现斌, 等. 机载SAR探测海面风场、海浪和海洋内波方法的分析与研究[J]. 气象水文海洋仪器, 2012, 29(2):6-10. Liu Lina, Chen Xi, Zhao Xianbin, et al. Sounding methods for ocean surface wind, wave and internal wave based on airborne SAR[J]. Mete-orological, Hydrological and Marine Instruments, 2012, 29(2):6-10.
[30] 艾未华, 严未, 赵现斌, 等. C波段机载合成孔径雷达海面风场反演新方法[J]. 物理学报, 2013, 62(6):1-9. Ai Weihua, Yan Wei, Zhao Xianbin, et al. A new ocean surface wind field retrieval method from C-band airborne synthetic aperture radar[J]. Acta Physica Sinica, 2013, 62(6):1-9.
[31] Kim T S, Park K A, Li X, et al. Observation of wind direction change on the sea surface temperature front using high-resolution full polari-metric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(6):2599-2607.
[32] Bergeron T, Bernier M, Chokmani K, et al. Wind speed estimation us-ing polarimetric RADARSAT-2 images:Finding the best polarization and polarization ratio[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2011, 4(4):896-904.
[33] 史伟哲. 星载SAR海洋场景仿真与反演方法综述[J]. 航天器工程, 2011, 20(1):50-56. Shi Weizhe. A review of spaceborne SAR simulation and retrieval for ocean scene[J]. Spacecraft Engineering, 2011, 20(1):50-56.
[34] 张彪, 何宜军. 高海况海洋遥感信息提取技术研究进展[J]. 海洋技术学报, 2015, 34(3):16-20. Zhang Biao, He Yijun. Research progress of the ocean remote sensing information extraction technology under high sea states[J]. Journal of Ocean Technology, 2015, 34(3):16-20.
[35] Mitnik L M, Dubina V A. Satellite SAR sensing of oceanic dynamics in the Kuril Straits area[C]//IEEE International Geoscience and Re-mote Sensing Symposium. Piscataway, NJ:IEEE, 2012:7632-7635.
[36] 朱敏慧. SAR的海洋动力探测研究及应用浅析[J]. 雷达学报, 2012, 1(4):342-352. Zhu Minhui. Review of ocean dynamical SAR detection[J]. Journal of Radars, 2012, 1(4):342-352.
[37] 蒋斌. 星载海洋宽幅SAR机载试验系统技术研究[D]. 南京:南京理工大学, 2012. Jiang Bin. The spaceborne ocean wide research SAR airborne test sys-tem[D]. Nanjing:Nanjing University of Science & Technology, 2012.
[38] Cerutti-Maori D, Sikaneta I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transanctions on Geoscience Remote Sensing, 2013, 51(1):560-572.
[39] Noviello C, Fornara G, Martorella M. Focused SAR image formation of moving targets based on Doppler parameter estimation[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2015, 53(6):3460-3470.
[40] Rousseau L P, Cierull C, Chouinard J Y. First results from an experi-mental scanSAR-GMTI mode on Radarsat-2[J]. IEEE Journal of Se-lected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11):5068-5080.
[41] Cerutti-Maori D, Sikaneta I, Gierull C H. Optimum SAR/GMTI pro-cessing and its application to the radar satellite RADARSAT-2 for traffic monitoring[J]. IEEE Transanctions on Geoscience Remote Sens-ing, 2012, 50(10):3868-3881.
[42] 张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6):596-606. Zhang Jie, Zhang Xi, Fan Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Jour-nal of Radars, 2016, 5(6):596-606.
文章导航

/