研究论文

三维空间标记点分布拓扑对计算机辅助骨科手术定位精度的影响

  • 李秦 ,
  • 彭远卓 ,
  • 刘文勇
展开
  • 北京航空航天大学生物与医学工程学院, 北京 100191
李秦,硕士研究生,研究方向为生物医学信息及仪器,电子信箱:869240338@qq.com

收稿日期: 2017-05-09

  修回日期: 2017-06-19

  网络出版日期: 2017-10-18

基金资助

国家高技术研究发展计划(863计划)项目(2015AA043201)

Influence of fiducials configuration on the targeting error in the computer-aided orthopaedic surgery

  • LI Qin ,
  • PENG Yuanzhuo ,
  • LIU Wenyong
Expand
  • School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

Received date: 2017-05-09

  Revised date: 2017-06-19

  Online published: 2017-10-18

摘要

空间配准是计算机辅助骨科手术的关键步骤,配准精度直接影响导航效果。本文针对基于二维图像的视觉配准方法,通过理论分析和计算机仿真,研究该方法常用的双平面定位标尺标记点分布拓扑对定位精度的影响,得到了标记点间距、数目等因素对定位精度的影响规律,给出了定位误差在空间上的分布特点。研究表明,增加标记点的数目和间距有助于减小定位误差;并且,在包络外接圆半径相等时,五点四边形的分布拓扑方式较四点矩形和四点三角形更优。

本文引用格式

李秦 , 彭远卓 , 刘文勇 . 三维空间标记点分布拓扑对计算机辅助骨科手术定位精度的影响[J]. 科技导报, 2017 , 35(19) : 56 -61 . DOI: 10.3981/j.issn.1000-7857.2017.19.007

Abstract

The registration is a critical step in the computer assisted orthopaedic surgery (CAOS). The accuracy of the registration directly affects the effect of the navigation. In this paper, the influence of the fiducials configuration on the accuracy of the bi-planar method widely applied in the fluoroscopy-based navigation is investigated through theoretical analysis and computer simulation. The error distribution characteristics under the influence of the factors such as the distance between the fiducials and the number of the fiducials are obtained. The results indicate that increasing the number and spacing of the fiducials can reduce the positioning error. The configuration of the 5-point quadrangle yields a smaller error than the configurations of 4-point rectangles and 4-points triangles. This research provides a reference for the fiducials configuration selection to improve the registration accuracy in the CAOS.

参考文献

[1] Lavallee S. Registration for computer integrated surgery:methodology, state of the art[M]//Taylor R H, Lavallée S, Burdea G C, Mösges R, eds. Computer-Integrated Surgery:Technology and Clinical Applica-tions. Cambridge, Massachusetts:The MIT Press, 1995:77-97.
[2] 栾胜. 机器人辅助微创骨科配准理论与方法研究[D]. 北京:北京航空航天大学, 2010. Luan Sheng. Registration theory and methods for robot-assisted mini-mal invasive orthopaedic surgery[D]. Beijing:Beihang University, 2010.
[3] Wiles A D, Likholyot A, Frantz D D, et al. A statistical model for point-based target registration error with anisotropic fiducial localizer error[J]. IEEE Transactions on Medical Imaging, 2008, 27(3):378-390.
[4] Shamir R R. Optimal landmarks selection and fiducial marker place-ment for minimal target registration error in image-guided neurosurgery[C]//Proceedings of 7261, Medical Imaging 2009:Visualization, ImageGuided Procedures, and Modeling, Lake. Buena Vista, FL, USA:SPIE, 2009:72612N.
[5] Shamir R R, Joskowicz L, Shoshan Y. Fiducial optimization for minimal target registration error in image-guided neurosurgery[J]. IEEE Transac-tions on Medical Imaging, 2012, 31(3):725-737.
[6] Battezzato A, Gastaldi L, Pastorelli S. Evaluation of the factors affecting the optimal fiducial configurations calculated through a genetic-algo-rithm-based methodology in image-guided neurosurgery[J]. Internation-al Journal of Medical Robotics & Computer Assisted Surgery, 2011, 7(4):441-451.
[7] Franaszek M, Cheok G S. Selection of fiducial locations and perfor-mance metrics for point-based rigid-body registration[J]. Precision En-gineering, 2016, 47:362-374.
[8] 王田苗, 刘文勇, 胡磊. 医用机器人与计算机辅助手术MRCAS进展[J]. 中国生物医学工程学报, 2008, 27(1):137-145. Wang Tianmiao, Liu Wenyong, Hu Lei. Progresses of medical robotics and computer assisted surgery (MRCAS)[J]. Chinese Journal of Biomedi-cal Engineering, 2008, 27(1):137-145.
[9] Lavallee S, Troccaz J, Sautot P. Computer-assisted spine surgery using anatomy-based registration[M]//Taylor R H, Lavallée S, Burdea G C, et al. Computer-Integrated Surgery:Technology and Clinical Applications[M]. Cambridge, Massachusetts:The MIT Press, 1995:425-429.
[10] Lei H, Sheng L, Manyi W, et al. A biplanar robot navigation system for the distal locking of intramedullary nails[J]. International Journal of Medical Robotics & Computer Assisted Surgery, 2010, 6(1):61-65.
[11] West J B, Fitzpatrick J M, Toms S A, et al. Fiducial point placement and the accuracy of point-based, rigid body registration[J]. Neurosur-gery, 2001, 48(4):816-817.
[12] 刘文勇, 王满宜, 王田苗, 等. 计算机辅助髓内钉远端锁定系统误差分析[J]. 北京航空航天大学学报, 2004, 30(9):850-854. Liu Wenyong, Wang Manyi, Wang Tianmiao, et al. Error analysis of a computer-assisted orthopedic system for distal locking ofintramedul-lary nail[J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2004, 30(9):850-854.
[13] Moghari M H, Abolmaesumi P. Distribution of target registration error for anisotropic and inhomogeneous fiducial localization error[J]. IEEE Transactions on Medical Imaging, 2009, 28(6):799-813.
[14] 张薇, 黄毓瑜, 栾胜, 等. 基于射影变换的骨科机器人双平面定位方法[J]. 材料科学与工艺, 2006, 14(增刊):83-86. Zhang Wei, Huang Yuyu, Luan Sheng, et al. A projective transforma-tion based biplanar positioning algorithm for orthopaedic robot[J]. Ma-terials Science & Technology, 2006, 14(Suppl):83-86.
文章导航

/