[1] Collins F S, Varmus H. A new initiative on precision medicine[J]. New England Journal of Medicine, 2015, 372(9):793-795.
[2] Runge V M, Aoki S, Bradley W G, et al. Magnetic resonance imaging and computed tomography of the brain-50 years of innovation, with a focus on the future[J]. Investigative Radiology, 2015, 50(9):551-556.
[3] Tidwell A S, Robertson I D. Magnetic resonance imaging of normal and abnormal brain perfusion[J]. Veterinary Radiology & Ultrasound, 2011, 52(Suppl 1):S62-71.
[4] Kubota Y. New developments in electron microscopy for serial image ac-quisition of neuronal profiles[J]. Microscopy (Oxf), 2015, 64(1):27-36.
[5] Ohno N, Katoh M, Saitoh Y, et al. Three-dimensional volume imaging with electron microscopy toward connectome[J]. Microscopy (Oxf), 2015, 64(1):17-26.
[6] Fakhry A, Zeng T, Ji S. Residual deconvolutional networks for brain electron microscopy image segmentation[J]. IEEE Transactions on Medi-cal Imaging, 2017, 36(2):447-456.
[7] Zeng T, Wu B, Ji S. DeepEM3D:Approaching human-level perfor-mance on 3D anisotropic EM image segmentation[J]. Bioinformatics, 2017, doi:btx188.
[8] Weissleder R. Molecular imaging in cancer[J]. Science, 2006, 312(5777):1168-1171.
[9] Fan L, Li H, Zhuo J, et al. The human brainnetome atlas:a new brain atlas based on connectional architecture[J]. Cerebral Cortex, 2016, 26(8):3508-3526.
[10] The Chinese Academy of Sciences. Brainnetome atlas[EB/OL].[2017-06-17]. http://atlas.brainnetome.org/.In.
[11] Van Essen D C, Smith S M, Barch D M, et al. The WU-Minn human connectome project:An overview[J]. Neuroimage, 2013, 80:62-79.
[12] Insel T R, Landis S C, Collins F S. Research priorities. The NIH BRAIN initiative[J]. Science, 2013, 340(6133):687-688.
[13] Kelloff G J, Hoffman J M, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development[J]. Clinical Cancer Research, 2005, 11(8):2785-2808.
[14] Shivamurthy V K, Tahari A K, Marcus C, et al. Brain FDG PET and the diagnosis of dementia[J]. American Journal of Roentgenology, 2015, 204(1):W76-W85.
[15] Bloudek L M, Spackman D E, Blankenburg M, et al. Review and me-ta-analysis of biomarkers and diagnostic imaging in Alzheimer's dis-ease[J]. Journal of Alzheimers Disease, 2011, 26(4):627-645.
[16] Ewers M, Brendel M, Rizk-Jackson A, et al. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects[J]. NeuroImage:Clinical, 2014, 4:45-52.
[17] Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191):309-314.
[18] Omuro A M, Leite C C, Mokhtari K, et al. Pitfalls in the diagnosis of brain tumours[J]. The Lancet Neurology, 2006, 5(11):937-948.
[19] Yoon J H, Kim J H, Kang W J, et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET:Concordance and accuracy[J]. European Radiology, 2014, 24(2):380-389.
[20] Zukotynski K A, Fahey F H, Vajapeyam S, et al. Exploratory evalua-tion of MR permeability with 18F-FDG PET mapping in pediatric brain tumors:A report from the Pediatric Brain Tumor Consortium[J]. Journal of Nuclear Medicine, 2013, 54(8):1237-1243.
[21] Li S, An L, Yu S, et al. (13)C MRS of human brain at 7 Tesla using[2-(13)C]glucose infusion and low power broadband stochastic proton decoupling[J]. Magnetic Resonance in Medicine, 2016, 75(3):954-961.
[22] Koglin N, Mueller A, Berndt M, et al. Specific PET imaging of xCtransporter activity using a (1) (8)F-labeled glutamate derivative re-veals a dominant pathway in tumor metabolism[J]. Clinical Cancer Re-search, 2011, 17(18):6000-6011.
[23] Takeuchi S, Wada K, Toyooka T, et al. Increased xCT expression cor-relates with tumor invasion and outcome in patients with glioblastomas[J]. Neurosurgery, 2013, 72(1):33-41.
[24] Venneti S, Dunphy MP, Zhang H, et al. Glutamine-based PET imag-ing facilitates enhanced metabolic evaluation of gliomas in vivo[J]. Sci-ence Translational Medicine, 2015, 7(274):274ra217.
[25] Glaudemans A W, Enting R H, Heesters M A, et al. Value of 11C-me-thionine PET in imaging brain tumours and metastases[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40(4):615-635.
[26] Koulouri O, Steuwe A, Gillett D, et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing's syndrome[J]. European Journal of Endocrinology, 2015, 173(4):M107-M120.
[27] Juhasz C, Dwivedi S, Kamson D O, et al. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors[J]. Molecular Imaging, 2014, 13(6):7290.2014.00015.
[28] Ishiwata K, Kubota K, Murakami M, et al. Re-evaluation of amino ac-id PET studies:can the protein synthesis rates in brain and tumor tis-sues be measured in vivo?[J]. Journal of Nuclear Medicine, 1993, 34(11):1936-1943.
[29] Davitz M S, Wu W E, Soher B J, et al. Quantifying global-brain me-tabolite level changes with whole-head proton MR spectroscopy at 3T[J]. Magnetic Resonance Imaging, 2017, 35:15-19.
[30] Bandettini PA. Twenty years of functional MRI:The science and the stories[J]. Neuroimage, 2012, 62(2):575-588.
[31] Mahvash M, Maslehaty H, Jansen O, et al. Functional magnetic reso-nance imaging of motor and language for preoperative planning of neu-rosurgical procedures adjacent to functional areas[J]. Clinical Neurolo-gy and Neurosurgery, 2014, 123:72-77.
[32] Chakraborty A, McEvoy A W. Presurgical functional mapping with functional MRI[J]. Current Opinion in Neurology, 2008, 21(4):446-451.
[33] Lang S, Duncan N, Northoff G. Resting-state functional magnetic reso-nance imaging:review of neurosurgical applications[J]. Neurosurgery, 2014, 74(5):453-464.
[34] Jones D K, Leemans A. Diffusion tensor imaging[J]. Methods in Molec-ular Biology, 2011, 711:127-144.
[35] Tatsuzawa K, Owada K, Sasajima H, et al. Surgical strategy of brain tumors adjacent to the optic radiation using diffusion tensor imagingbased tractography[J]. Oncology Letters, 2010, 1(6):1005-1009.
[36] Pujol S, Wells W, Pierpaoli C, et al. The DTI challenge:Toward stan-dardized evaluation of diffusion tensor imaging tractography for neuro-surgery[J]. Journal of Neuroimaging, 2015, 25(6):875-882.
[37] Hendrix P, Griessenauer C J, Cohen-Adad J, et al. Spinal diffusion tensor imaging:A comprehensive review with emphasis on spinal cord anatomy and clinical applications[J]. Clinical Anatomy, 2015, 28(1):88-95.
[38] Lerner A, Mogensen M A, Kim P E, et al. Clinical applications of dif-fusion tensor imaging[J]. World Neurosurgery, 2014, 82(1/2):96-109.
[39] Mezger U, Jendrewski C, Bartels M. Navigation in surgery[J]. Langen-beck's Archives of Surgery, 2013, 398(4):501-514.
[40] Zhang J, Chen X, Zhao Y, et al. Impact of intraoperative magnetic res-onance imaging and functional neuronavigation on surgical outcome in patients with gliomas involving language areas[J]. Neurosurgical Re-view, 2015, 38(2):319-330.
[41] Bir S C, Konar S K, Maiti T K, et al. Utility of neuronavigation in in-tracranial meningioma resection:A single-center retrospective study[J]. World Neurosurgery, 2016, 90:546-555.
[42] Stachura K, Grzywna E. Neuronavigation-guided endoscopy for intra-ventricular tumors in adult patients without hydrocephalus[J]. Video-surgery and Other Miniinvasive Techniques, 2016, 11(3):200-207.
[43] Gerard I J, Kersten-Oertel M, Petrecca K, et al. Brain shift in neuro-navigation of brain tumors:A review[J]. Medical Image Analysis, 2017, 35:403-420.
[44] Riva M, Hennersperger C, Milletari F, et al. 3D intra-operative ultra-sound and MR image guidance:Pursuing an ultrasound-based man-agement of brainshift to enhance neuronavigation[J]. International Jour-nal of Computer Assisted Radiology and Surgery, 2017, doi:10.1007/s11548-017-1578-5.
[45] Lobo F A, Wagemakers M, Absalom A R. Anaesthesia for awake crani-otomy[J]. British Journal of Anaesthesia, 2016, 116(6):740-744.
[46] Stevanovic A, Rossaint R, Veldeman M, et al. Anaesthesia manage-ment for awake craniotomy:Systematic review and Meta-analysis[J]. PLoS One, 2016, 11(5):e0156448.
[47] Eseonu C I, Rincon-Torroella J, ReFaey K, et al. Awake craniotomy vs craniotomy under general anesthesia for perirolandic gliomas:Eval-uating perioperative complications and extent of resection[J]. Neurosur-gery, 2017, doi:nyx023.
[48] Smith J A, Jivraj J, Wong R, et al. 30 years of neurosurgical robots:Review and trends for manipulators and associated navigational sys-tems[J]. Annals of Biomedical Engineering, 2016, 44(4):836-846.
[49] Doulgeris J J, Gonzalez-Blohm S A, Filis A K, et al. Robotics in neu-rosurgery:Evolution, current challenges, and compromises[J]. Cancer Control, 2015, 22(3):352-359.
[50] Li Q H, Zamorano L, Pandya A, et al. The application accuracy of the NeuroMate robot-A quantitative comparison with frameless and frame-based surgical localization systems[J]. Computer Aided Surgery, 2002, 7(2):90-98.
[51] Sutherland G R, Lama S, Gan L S, et al. Merging machines with mi-crosurgery:Cclinical experience with neuroArm[J]. Journal of Neuro-surgery, 2013, 118(3):521-529.
[52] Devito D P, Kaplan L, Dietl R, et al. Clinical acceptance and accura-cy assessment of spinal implants guided with SpineAssist surgical ro-bot:retrospective study[J]. Spine, 2010, 35(24):2109-2115.
[53] Carai A, Mastronuzzi A, De Benedictis A, et al. Robot-assisted stereo-tactic biopsy of diffuse intrinsic pontine glioma:A single centre experi-ence[J]. World Neurosurgery, 2017, 101:584-588.
[54] Wang W, Lv Z, Li X, et al. Virtual reality based GIS analysis platform[C]//International Conference on Neural Information Processing. Cham:Springer International Publishing, 2015:638-645.
[55] Choudhury N, Gelinas-Phaneuf N, Delorme S, et al. Fundamentals of neurosurgery:Virtual reality tasks for training and evaluation of techni-cal skills[J]. World Neurosurgery, 2013, 80(5):e9-e19.
[56] Wang S, Ying J, Wei L, et al. Effects of parasagittal meningiomas on intracranial venous circulation assessed by the virtual reality technolo-gy[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(8):12706-12715.
[57] Alaraj A, Luciano C J, Bailey D P, et al. Virtual reality cerebral aneu-rysm clipping simulation with real-time haptic feedback[J]. Neurosur-gery, 2015, 11(Suppl 2):52-58.
[58] Billinghurst M, Clark A, Lee G. A survey of augmented reality[J]. Foundations and Trends in Human-Computer Interaction, 2015, 8(2/3):73-272.
[59] Meola A, Cutolo F, Carbone M, et al. Augmented reality in neurosur-gery:A systematic review[J]. Neurosurgical Review, 2016, doi:10.1007/s10143-016-0732-9.
[60] Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosur-gery:accuracy and intraoperative application of an image projection technique[J]. Journal of Neurosurgery, 2015, 123(1):206-211.
[61] Kersten-Oertel M, Gerard I, Drouin S, et al. Augmented reality in neu-rovascular surgery:Feasibility and first uses in the operating room[J]. International Journal of Computer Assisted Radiology and Surgery, 2015, 10(11):1823-1836.
[62] Louis D N, Perry A, Reifenberger G, et al. The 2016 world health or-ganization classification of tumors of the central nervous system:A summary[J]. Acta Neuropathologica, 2016, 131(6):803-820.
[63] Yan H, Parsons D W, Jin G, et al. IDH1 and IDH2 mutations in glio-mas[J]. New England Journal of Medicine, 2009, 360(8):765-773.
[64] Eckel-Passow J E, Lachance D H, Molinaro A M, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tu-mors[J]. New England Journal of Medicine, 2015, 372(26):2499-2508.
[65] van den Bent M J, Dubbink H J, Sanson M, et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors:A report from EORTC Brain Tumor Group Study 26951[J]. Journal of Clinical Oncology, 2009, 27(35):5881-5886.
[66] Stupp R, Hegi M E, Mason W P, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analy-sis of the EORTC-NCIC trial[J]. The Lancet Oncology, 2009, 10(5):459-466.
[67] Cairncross J G, Wang M, Jenkins R B, et al. Benefit from procarba-zine, lomustine, and vincristine in oligodendroglial tumors is associat-ed with mutation of IDH[J]. Journal of Clinical Oncology, 2014, 32(8):783-790.
[68] Westphal M, Heese O, Steinbach J P, et al. A randomised, open label phase Ⅲ trial with nimotuzumab, an anti-epidermal growth factor re-ceptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma[J]. European Journal of Cancer, 2015, 51(4):522-532.
[69] Robinson G W, Orr B A, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy[J]. BMC Cancer, 2014, 14:258.
[70] 刘小海, 冯铭, 王任直. 垂体腺瘤分型的历史、现状及展望[J]. 中国神经精神疾病杂志, 2016(9):565-568. Liu Xiaohai, Feng Ming, Wang Renzhi. Past, present, and future of the classification pituitary adenoma[J]. Chinese Journal of Nervous and Mental Diseases, 2016(9):565-568.
[71] Ma Z Y, Song Z J, Chen J H, et al. Recurrent gain-of-function USP8 mutations in Cushing's disease[J]. Cell Research, 2015, 25(3):306-317.
[72] Yao X, Gao H, Li C, et al. Analysis of Ki67, HMGA1, MDM2, and RB expression in nonfunctioning pituitary adenomas[J]. Journal of Neu-ro-Oncology, 2017, 132(2):199-206.
[73] Glebauskiene B, Liutkeviciene R, Vilkeviciute A, et al. Does MMP-9 gene polymorphism play a role in pituitary adenoma development?[J]. Disease Markers, 2017, doi:10.1155/2017/5839528.
[74] Northcott P A, Korshunov A, Witt H, et al. Medulloblastoma compris-es four distinct molecular variants[J]. Journal of Clinical Oncology, 2011, 29(11):1408-1414.
[75] Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medul-loblastoma:An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas[J]. Acta Neuropathologica, 2012, 123(4):473-484.
[76] Archer T C, Mahoney E L, Pomeroy S L. Medulloblastoma:Molecular classification-based personal therapeutics[J]. Neurotherapeutics, 2017, 14(2):265-273.
[77] Meng J, Agrahari V, Youm I. Advances in targeted drug delivery ap-proaches for the central nervous system tumors:the inspiration of nanobiotechnology[J]. Journal of NeuroImmune Pharmacology, 2017, 12(1):84-98.
[78] Miyake M M, Bleier B S. The blood-brain barrier and nasal drug de-livery to the central nervous system[J]. The American Journal of Rhi-nology & Allergy, 2015, 29(2):124-127.
[79] Fakhoury M. Drug delivery approaches for the treatment of glioblasto-ma multiforme[J]. Artificial Cells Nanomedicine and Biotechnology, 2016, 44(6):1365-1373.
[80] Gilbert M R, Dignam J J, Armstrong T S, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma[J]. New England Jour-nal of Medicine, 2014, 370(8):699-708.
[81] Chinot O L, Wick W, Mason W, et al. Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma[J]. New England Jour-nal of Medicine, 2014, 370(8):709-722.
[82] Sandmann T, Bourgon R, Garcia J, et al. Patients with proneural glio-blastoma may derive overall survival benefit from the addition of beva-cizumab to first-line radiotherapy and temozolomide:Retrospective analysis of the AVAglio trial[J]. Journal of Clinical Oncology, 2015, 33(25):2735-2744.
[83] Tabouret E, Boudouresque F, Farina P, et al. MMP2 and MMP9 as candidate biomarkers to monitor bevacizumab therapy in high-grade glioma[J]. Neuro-Oncology, 2015, 17(8):1174-1176.
[84] Urup T, Michaelsen S R, Olsen L R, et al. Angiotensinogen and HLA class Ⅱ predict bevacizumab response in recurrent glioblastoma pa-tients[J]. Molecular Oncology, 2016, 10(8):1160-1168.
[85] Bouffet E, Larouche V, Campbell B B, et al. Immune checkpoint inhi-bition for hypermutant glioblastoma multiforme resulting from germ-line biallelic mismatch repair deficiency[J]. Journal of Clinical Oncolo-gy, 2016, 34(19):2206-2211.
[86] Reardon D A, et al. Randomized Phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma:checkMate 143[EB/OL].[2017-05-25]. http://www.ab-stractsonline.com/pp8/#!/4277/presentation/151.In.
[87] Smith M L, Lee J Y. Stereotactic radiosurgery in the management of brain metastasis[J]. Neurosurgical Focus, 2007, 22(3):E5.
[88] Andrews D W, Scott C B, Sperduto P W, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases:Phase Ⅲ results of the RTOG 9508 randomised trial[J]. Lancet, 2004, 363(9422):1665-1672.
[89] Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases:a randomized controlled trial[J]. JAMA, 2006, 295(21):2483-2491.
[90] Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901):A multi-institu-tional prospective observational study[J]. The Lancet Oncology, 2014, 15(4):387-395.
[91] Lippitz B, Lindquist C, Paddick I, et al. Stereotactic radiosurgery in the treatment of brain metastases:The current evidence[J]. Cancer Treatment Reviews, 2014, 40(1):48-59.
[92] Shimony N, Shofty B, Harosh C B, et al. Surgical resection of cerebral metastases leads to faster resolution of peritumoral edema than stereo-tactic radiosurgery:A volumetric analysis[J]. Annals of Surgical Oncol-ogy, 2017, 24(5):1392-1398.
[93] Kumar R, Laack N, Pollock B E, et al. Stereotactic radiosurgery in the treatment of recurrent CNS lymphoma[J]. World Neurosurgery, 2015, 84(2):390-397.
[94] Cohen-Inbar O, Lee C C, Mousavi SH, et al. Stereotactic radiosurgery for intracranial hemangiopericytomas:A multicenter study[J]. Journal of Neurosurgery, 2017, 126(3):744-754.
[95] McDonald M W, Fitzek M M. Proton therapy[J]. Current Problems in Cancer, 2010, 34(4):257-296.
[96] Chhabra A, Mahajan A. Treatment of common pediatric CNS malignan-cies with proton therapy[J]. Chinese Clinical Oncology, 2016, 5(4):49.
[97] Yock T I, Yeap B Y, Ebb D H, et al. Long-term toxic effects of pro-ton radiotherapy for paediatric medulloblastoma:a phase 2 single-arm study[J]. The Lancet Oncology, 2016, 17(3):287-298.
[98] Combs S E. Does proton therapy have a future in CNS tumors?[J]. Cur-rent Treatment Options in Neurology, 2017, 19(3):12.
[99] Leroy R, Benahmed N, Hulstaert F, et al. Proton therapy in children:A systematic review of clinical effectiveness in 15 pediatric cancers[J]. International Journal of Radiation Oncology Biology Physics, 2016, 95(1):267-278.
[100] Abecassis I J, Xu D S, Batjer H H, et al. Natural history of brain ar-teriovenous malformations:A systematic review[J]. Neurosurgical Fo-cus, 2014, 37(3):E7.
[101] Sahlein D H, Mora P, Becske T, et al. Features predictive of brain ar-teriovenous malformation hemorrhage:Extrapolation to a physiologic model[J]. Stroke, 2014, 45(7):1964-1970.
[102] Ansari S A, Schnell S, Carroll T, et al. Intracranial 4D flow MRI:To-ward individualized assessment of arteriovenous malformation hemo-dynamics and treatment-induced changes[J]. American Journal of Neuroradiology, 2013, 34(10):1922-1928.
[103] Zammar S G, Hamade Y J, Aoun R J, et al. Precision medicine in brain arteriovenous malformation management:Arteries steal the show but veins may hold the crystal ball[J]. Neurosurgery, 2014, 75(6):N13-N14.
[104] Jin P, Wu D, Li X, et al. Towards precision medicine in epilepsy sur-gery[J]. Annals of Translational Medicine, 2016, 4(2):24.
[105] Gomez-Huelgas R, Perez-Jimenez F, Serrano-Rios M, et al. Clinical decisions in patients with diabetes and other cardiovascular risk fac-tors. A statement of the Spanish Society of Internal Medicine[J]. Re-vista Clinica Espanola (English Edition), 2014, 214(4):209-215.
[106] Quigg M, Harden C. Minimally invasive techniques for epilepsy sur-gery:stereotactic radiosurgery and other technologies[J]. Journal of Neurosurgery, 2014, 121(Suppl):232-240.
[107] Ko T M, Wong C S, Wu J Y, et al. Pharmacogenomics for personal-ized pain medicine[J]. Acta Anaesthesiologica Taiwanica, 2016, 54(1):24-30.
[108] Zambelli V O, Chen C H, Gross E R. Reactive aldehydes:an initial path to develop precision medicine for pain control[J]. Annals of Translational Medicine, 2015, 3(17):258.
[109] Poon K H, Lee T L. Personalised and precision pain medicine:A dream coming true?[J]. Annals of the Academy of Medicine, Singa-pore, 2013, 42(10):545-546.