多层网络是近年来提出的新型复杂网络模型,在级联故障分析、信息传播、链路预测和网络同步等诸多领域均有广泛应用。多层网络的任意两层网络结构间往往存在关联性和耦合性,如何检测两层网络之间是否具有结构相关性并对其进行定量刻画是一个非常重要且亟待解决的问题。本文首先分3个层次总结并提出度量双层网络结构相关性的方法与统计量,其中第1层次是检测双层网络整体上的连接相关性,第2层次检测两层网络所有节点之间整体上的度度相关特性,第3层次是检测双层网络富节点之间的连接相关性。由于这3种相关性的计算和度量都依赖于网络统计量进行,而统计量的绝对数值往往没有意义,因此提出了以多种双层网络的零模型作为参照物,通过假设检验方法来量化双层网络之间的结构相关性,分析了这种结构相关性存在的内在机理。最后,使用一个实证双层网络——全球语言多层网络验证了本文研究范式的有效性。本文研究可检测出实证多层网络中任意两层之间复杂的耦合作用。
Recently the framework of multi-layer networks was proposed as a new model of complex networks, and was used in widespread applications in many fields, such as the cascading failure, the information spreading, the link prediction and the network synchronization. In multi-layer networks, the correlation and the coupling between two layers of network structures might exist, so it is a very significant issue how to detect the structural correlation and quantify the correlation between the two layers. In this study we summarize and propose methods to measure the structural correlation of double-layer networks in three levels. The first level is to detect the overall connection relationship of the whole double-layer network. The second level is to test the degree correlation characteristics between all nodes at different layers. At last, the third level is to look for the connection relationship between the rich nodes at different layers. Although the three kinds of correlations are all dependent on the network statistics, these statistics are all without units. Furthermore, the sizes and the structures of different networks see a great difference. Therefore, absolute numerical values of some statistics often are not important and we put forward a variety of null models for double-layer networks as a reference. Through the hypothesis testing methods, we can quantify the structure correlation in double-layer networks, and try to analyze the intrinsic mechanism of inducing this kind of structure correlation. Finally, we use an empirical double-layer network(the global language multi-layer network)to verify the effectiveness of our methodology. This methodology can be used to detect the complex coupling between the layers in an empirical double-layer network, and for the better understanding of multi-layer networks and for new applications based on the structure complexity of multi-layer networks.
[1] Lee K M, Min B, Goh K I. Towards real-world complexity:An introduc tion to multiplex networks[J]. The European Physical Journal B, 2015, 88(2):1-20.
[2] Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1):1-122.
[3] Milo R, Shenorr S, Itzkovitz S, et al. Network motifs:Simple building blocks of complex networks[J]. Science, 2002, 298(5594):824-827.
[4] Milo R. Superfamilies of evolved and designed networks[J]. Science, 2004, 303(5663):1538-1542.
[5] Foster J G, Foster D V, Grassberger P, et al. Edge direction and the structure of networks[J]. Proceedings of the National Academy of Sci ences of the United States of America, 2010, 107(24):10815-10820.
[6] Colizza V, Flammini A, Serrano M A, et al. Detecting rich-club order ing in complex networks[J]. Nature Physics, 2006, 2(3):110-115.
[7] Mahadevan P, Hubble C, Krioukov D, et al. Orbis:Rescaling degree correlations to generate annotated internet topologies[J]. ACM SIG COMM Computer Communication Review, 2007, 37(4):325-336.
[8] Gjoka M, Kurant M, Markopoulou A. 2.5K-graphs:From sampling to generation[C]. IEEE International Conference on Computer Communica tions, Turin, Italy:2012
[9] 汪小帆, 李翔, 陈关荣. 复杂网络引论——模型、结构与动力学[M]. 北京:高等教育出版社, 2012. Wang Xiaofan, Li Xiang, Chen Guanrong. Introduction to complex net works:Models, structures and dynamics[M]. Beijing:Higher Education Press, 2012:217-218.
[10] 刘军. QAP:测量"关系" 之间关系的一种方法[J]. 社会, 2007, 27(4):164-174. Liu Jun. QAP:A unique method of measuring "Relationships" in rela tional data[J]. Society, 2007, 27(4):164-174.
[11] Fraser A M, Swinney H L. Independent coordinates for strange attrac tors from mutual information. Physical Review A, 1986, 33(2):1134-1140.
[12] Bianconi G. Statistical mechanics of multiplex networks:Entropy and overlap[J]. Physical Review E, 2013, 87(6):62806.
[13] Parshani R, Rozenblat C, Ietri D, et al. Inter-similarity between cou pled networks[J]. Europhysics letters, 2010, 92(6):2470-2484.
[14] Szell M, Lambiotte R, Thurner S. Multirelational organization of largescale social networks in an online world[J]. Proceedings of the Nation al Academy of Sciences of the United States of America, 2010, 107(31):13636-13641.
[15] Min B, Yi S D, Lee K M, et al. Network robustness of multiplex net works with interlayer degree correlations[J]. Physical Review E, 2014, 89(4):42811.
[16] 姚尊强, 尚可可, 许小可. 加权网络的常用统计量[J]. 上海理工大学学报, 2012, 34(1):18-26. Yao Zunqiang, Shang Keke, Xu Xiaoke. Fundamental statistics of weighted networks[J]. Journal of University of ShangHai for Science and Technology, 2012, 34(1):18-26.
[17] Opsahl T, Colizza V, Panzarasa P. Prominence and control:The weighted rich-club effect[J]. Physical Retters Letters, 2008, 101(16):168702.
[18] Zhou S, Mondragon R J. The rich-club phenomenon in the internet to pology[J]. IEEE Communications Letters, 2004, 8(3):180-182.
[19] Amaral L A N, Guimera R. Complex networks:Lies, damned lies and statistics[J]. Nature Physics, 2006, 2(2):75-76.
[20] Mahadevan P, Krioukov D, Fall K, et al. Systematic topology analysis and generation using degree correlations[J]. ACM Sigcomm Computer Communication Review, 2006, 36(4):135-146.
[21] Orsini C, Dankulov M M, Colomerdesimón P, et al. Quantifying ran domness in real networks[J]. Nature Communications, 2015, 6:8627.
[22] Schreiber T, Schmitz A. Surrogate time series[J]. Physica D:Nonlinear Phenomena, 1999, 142(3/4):346-382.
[23] Ronen S, Goncalves B, Hu K Z, et al. Links that speak:The global language network and its association with global fame[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(52):E5616-E5622.