网络科学已进入更高的超网络科学探索阶段,近年来探索多层次超网络已成为国内外令人关注的前沿课题之一。本文探讨超网络特点,列举了2个典型实例,论述了理论模型及其重要性,讨论了非线性超网络数理问题的艰巨性,介绍了多层次超网络的研究路线和进展概况,提出探索中的问题并进行思考。
The network science has entered the new stage-the super network science. The exploration of the supernetwork becomes one of the frontier issues both at home and abroad in recent years. This paper briefly discusses the characteristics of the supernetwork, with 2 typical examples, focusing on the importance of the theoretical model. The difficulty of nonlinear hyper-network mathematical problems is highlighted. The research route and the progress of multi-level hyper networks are reviewed. At the end of the paper, we put forward some questions, as the food for thought.
[1] 方锦清. 科技浪花与追梦随笔——新兴科学交叉集[M]. 北京:中国原子能出版社, 2016. Fang Jinqing. Science and technology spray and dream-chaser-emerg ing science cross-sets[M]. Beijing:China Atomic Energy Press, 2016.
[2] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[3] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[4] 毕桥, 方锦清. 网络科学与统计物理方法[M]. 北京:北京大学出版社, 2011. Bi Qiao, Fang Jinqing. Network science and the method of statistical Physics[M]. Beijing:Peking University Press, 2011.
[5] Barabás A L, The network take over[J]. Nature Physics, 2012, 8(8):14-16.
[6] Barabás A L. Network Science[M]. Cambridge:Cambridge University Press, 2016.
[7] D'Agostino G, Scala A. Networks of Networks:The last frontier of com plexity[M]. Springer International Publishing, 2014.
[8] Boccaleti S, Bianconi G, Criado, et al. The structure and dynamics of multiplar networks[J]. Physics Report, 2014, 544(1):1-122.
[9] 方锦清. 大脑网络的探索进程(一)——研究特点、方法与三大类型[J]. 自然杂志, 2012, 34(6):344-349. Fang Jinqing. Exploring progress on brain networks (I):Research char acteristics, method and three major types[J]. Chinese Journal of Nature, 2012, 34(6):344-349.
[10] 方锦清. 大脑网络的探索进程(二)——进展、思考和挑战[J]. 自然杂志, 2013, 35(2):135-143. Fang Jinqing. Exploring progress on brain networks(Ⅱ):Progress, thinking and challenges[J]. Chinese Joural of Nature, 2013, 35(2):135-143.
[11] 方锦清. 从单一网络向《网络的网络》 的转变进程——略论多层次超网络模型的探索与挑战[J].复杂系统与复杂性科学, 2016, 13(1):40-47. Fang Jinqing. From a single network to "network of networks" develop ment process:Some discussion on the exploration of the maltilayer su pernetwork model and challenges[J]. Complex Systems and Complexity Science, 2016, 13(1):40-47.
[12] 刘强, 方锦清, 李永. 三层超网络演化模型特性研究[J]. 复杂系统与复杂性科学, 2015, 12(2):64-71. Liu Qiang, Fang Jinqing, Li Yong. Research on the characteristics of three layer hyper network evolution model[J]. Complex Systems and Complexity Science, 2015, 12(2):64-71.
[13] 刘强, 方锦清, 李永. 基于统一混合网络理论框架的多层次超网络模型研究[J]. 复杂系统与复杂性科学, 2016, 13(1):84-90. Liu Qiang, Fang Jinqing, Li Yong. Research on hierarchical hyper net work model based on unified hybrid network theory framework[J]. Complex Systems and Complexity Science, 2016, 13(1):84-90.
[14] Liu Q, Fang J Q, Li Y. Three-layered supernetwork evolution model and the application for China-Worlds top 500 enterprises supernet work[J]. International Journal of Modern Physics C, 2014, 25(5):1440003.
[15] Liu Q, Fang J Q, Li Y. Some characteristics of supernetworks based on unified hybrid network theory framework[J]. International Journal of Moden Physics C, 2017, 28(5):1750057.
[16] Fang J Q, Liu Q H, Tang M, et al. Network science faces the chal lenge and opportunity:Exploring "network of networks" and its uni fied theoretical framework[J]. Journal of Applied Analysis and Compu tation, 2016, 6(1):12-29.
[17] Liu Qiang, Fang Jinqing, Li yong. Exploring some characteristics of unified hybrid supernetwork theory model[J]. Journal of Shanghai Nor mal University (Natural Science), 2016, 45(3):329-336.
[18] 刘强, 方锦清, 李永. 500强企业高科技超网络[J]. 科技导报, 2017, 35(14):42-49. Liu Qiang, Fang Jinqing, Li Yong. China's top 500 enterprises hightech supernetwork[J]. Science and Technology Review, 2017, 35(14):42-49.
[19] Fang J Q, Bi Q, Li Y. Toward a harmonious unifying hybrid model for any evolving complex networks[J]. Advances in Complex Systems, 2007, 10(2):117-141.
[20] Fang J Q, Li Y, Bi Q. From a harmonious unifying hybrid preferential model toward a large unifying hybrid network model[J]. International Journal of Modern Physics B, 2007, 21(30):5121-5142.
[21] Bi Q, Fang J Q. Entropy and HUHPM approach for complex networks[J]. Physica A:Statistical Mechanics and its Applications, 2007, 383(2):753-762.
[22] Zou Y, Pereira T, Small M, et al. Basin of attraction determines hyster esis in explosive synchronization[J]. Physical Review Letters, 2014, 112(11):114102.
[23] 方锦清. 逆算符理论方法及其在非线性系统中应用[J]. 物理学进展, 1993, 13(4):441-560. Fang Jinqing. Inverse operator theory method and its application in nonlinear physics[J]. Progress in Physics, 1993, 3(4):441-560.
[24] 方锦清.一种统一研究非线性系统的逆算符理论——分解法及其应用[M]. 北京:中国科学出版社, 2017. 待出版Fang Jinqing. A unified inverse operator theory for nonlinear systems-Decomposition method and its application[M]. Beijing:China Science Press, 2017. to be published.