专题论文

青藏高原隆升阶段性

  • 方小敏
展开
  • 中国科学院青藏高原研究所;中国科学院青藏高原地球科学卓越创新中心, 北京 100101
方小敏,研究员,研究方向为青藏高原隆起与环境变化,电子信箱:fangxm@itpcas.ac.cn

收稿日期: 2016-11-24

  修回日期: 2017-02-27

  网络出版日期: 2017-03-30

基金资助

国家重大科学研究计划全球变化研究项目(2013CB956400);国家自然科学基金项目(41620104002)

Phased uplift of the Tibetan Plateau

  • FANG Xiaomin
Expand
  • Institute of the Tibetan Plateau Research, Chinese Academy of Sciences;Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences Beijing 100101, China

Received date: 2016-11-24

  Revised date: 2017-02-27

  Online published: 2017-03-30

Supported by

 

摘要

青藏高原的隆升不仅是印度板块与亚洲板块碰撞导致的地球内部岩石圈地球动力学作用过程的结果,并且对全球和亚洲气候变化、亚洲地貌和地表环境过程及大量地内和地表矿产资源的形成分布产生了深刻影响。因而研究高原隆升的历史不仅对解决上述重大科学问题提供重要途径,而且可为高原区域资源环境的开发和可持续发展提供理论依据。简要回顾和梳理了国内外近年来,围绕青藏高原隆升所取得的主要进展。研究表明新生代青藏高原经历了多阶段、多幕次、准同步异幅且高原南北后期加速隆升的演化过程。具体可划分为55~30、25~10及8~0 Ma 3个主要生长隆升期次。其中55~30 Ma的高原早期隆升,主要集中在高原中南部的拉萨地块和羌塘地块,并且可能隆升到接近3 km高度,或甚至更高,有人称之为“原西藏高原”,但其周缘存在准同步异幅的变形隆升响应;25~10 Ma的中期隆升,“原西藏高原”南北缘的喜马拉雅山和可可西里-昆仑山开始强烈隆升,“原西藏高原”率先隆升到目前高度并开始向东西两侧挤出物质、拉张形成南北向裂谷,高原北缘普遍产生广泛变形隆升但幅度有限;从约8 Ma开始的晚期隆升,高原南、北部边缘的喜马拉雅山和昆仑山-西秦岭以北的高原东北部隆升显著加速,经历一系列短暂快速的多幕次构造变形和生长隆升,最终形成现今高原面貌。

关键词: 青藏高原; 隆升; 阶段性

本文引用格式

方小敏 . 青藏高原隆升阶段性[J]. 科技导报, 2017 , 35(6) : 42 -50 . DOI: 10.3981/j.issn.1000-7857.2017.06.004

Abstract

The uplift of the Tibetan Plateau is the result of the collision of the India-Asia Plates with the result of the geodynamic process of the earth's lithosphere, and has profound impacts on the global and Asian climate changes, the Asian geomorphology and surface environment, and the abundant surface and underground mineral resources. Thus, the study of the uplift history of the Tibetan Plateau can not only solve the major scientific problems mentioned above, but also provide a theoretical basis for the plateau regional environmental resource exploitation and sustainable development. In this paper, we briefly review the main progresses of recent studies concerning the uplift of the Tibetan Plateau. It is shown that the Tibetan Plateau has experienced uplift processes of multiple stages and episodes, quasisynchronous but with different amplitudes, which are accelerated in a later period.
The uplift processes can be divided into three main uplift stages, those during 55~30 Ma, 25~30 Ma, and 8~0 Ma, respectively. The early uplift mainly happens in the Qiangtang and Lhasa terrains of the central-southern Tibetan Plateau during 55~30 Ma, which might be close to the modern plateau elevation and is called the "Proto-Tibetan Plateau"; they are deformation uplifts in the peripheral area, quasisynchronous but with different amplitudes. The second stage uplift mainly occurs in the Himalaya and Hoh Xil-Kunlun Mountains in the north and south of the "Proto-Tibetan Plateau" during 25~10 Ma. The "Proto-Tibetan Plateau" may have first reached its present elevation and started to squeeze its materials out to both E-W sides, resulting in the N-S extensional rifts, accompanied by a widespread deformation and uplift of the northern part of the plateau, but with limited magnitudes. Since~8 Ma, the Himalayas and NE Tibetan Plateau in the southern and northern margins of the major plateau begins to experience an accelerated uplift, manifesting as a set of episodic short intense tectonic deformation events, and finally develops into its present configuration.

参考文献

[1] 施雅风, 刘东生. 希夏邦马峰地区科学考察初步报告[J]. 科学通报, 1964, 9(10):928-938. Shi Yafeng, Liu Dongsheng. Preliminary report on the scientific investigation of the Mount Shisha Pangma area[J]. Science Bulletin, 1964, 9(10):928-938.
[2] 徐仁, 陶君客, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15(1):102-109. Xu Ren, Tao Junke, Sun Xiangjun. On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15(1):102-109.
[3] 李吉均, 文世宣, 张青松, 等. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学, 1979(6):78-86. Li Jijun, Wen Shixuan, Zhang Qingsong, et al. A discussion on the period amplitude and type of the uplift of the Qinghai-Xizang Plateau[J]. Science China, 1979(6):78-86.
[4] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246):163-166.
[5] Kroop D. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1991, 117:257-263.
[6] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052):1663-1670.
[7] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4):357-396.
[8] Coleman M, Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517):49-52.
[9] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677.
[10] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077):677681.
[11] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13):49874992.
[12] Deng Tao, Ding Lin. 2015. Paleoaltimetry reconstructions of the Tibetan Plateauprogress and contradictions[J]. National Science Review, 2015, 2(4):417-437.
[13] Fang X M, Garzione C, Van der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3):545-560.
[14] Fang Xiaomin, Liu Dongliang, Song Chunhui, et al. Oligocene slow and MioceneQuaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan:Evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 2013, 373(1):149-171.
[15] Li Jijun, Fang Xiaomin, Song Chunhui, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3):400-423.
[16] 刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 1998, 18(3):194-204. Liu Dongsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian Mosoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, 18(3):194-204.
[17] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposition in China[J]. Nature, 2002, 416(6877):159-163.
[18] 安芷生, 张培震, 王二七, 等. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究, 2006, 26(5):678-693. An Zhisheng, Zhang Peizhen, Wang Erqi, et al. Changes of the monsoonarid environment in China and growth of the Tibetan Plateau since the Miocene[J]. Quaternary Sciences, 2006, 26(5):678-693.
[19] Licht A, Van Cappelle M, Abels H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513(7519):501-506.
[20] Boos W, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 2010, 463(7278):218-222.
[21] Liu Xiaodong, Dong Buwen. Influence of the Tibetan Plateau uplift on the Asian monsoonarid environment evolution[J]. Chinese Science Bulletin, 2013, 58(34):4277-4291.
[22] Rowley D B. Age of initiation of collision between India and Asia:A review of stratigraphic data[J]. Earth and Planetary Science Letters, 1996, 145(1-4):1-13.
[23] Rowley D B. Minimumage of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain Section[J]. The Journal of Geology, 1998, 106(2):220-235.
[24] Aitchison J C, Davis A M, Badengzhu B, et al. New constraints on the India-Asia collision:The lower miocene gangrinboche conglomerates, Yarlung Tsangpo suture zone, SE Tibet[J]. Journal of Asian Earth Sciences, 2002, 21(3):251-263.
[25] Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide?[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B5):B05423.
[26] Ding Lin, Xu Qiang, Yue Yahui, et al. The Andean-type Gangdese Mountains:Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392:250-264.
[27] Hu X M, Garzanti E, Wang J G, et al. The timing of India-Asia collision onsetfacts, theories, controversies[J]. EarthScience Reviews, 2016, 160:264-299.
[28] Molnar P, Stock J M. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3):TC3001.
[29] Copley A, Avouac J P, Royer J Y. India-Asia collision and the Cenozoic slow down of the Indian plate:Implications for the forces driving plate motions[J]. Journal of Geophysical Research:Atmospheres, 2010, 115(B3):181-192.
[30] Wang Chengshan, Dai Jingen, Zhao Xixi, et al. Outward-growth of the Tibetan Plateau during the Cenozoic:A review[J]. Tectonophysics, 2014, 621:1-43.
[31] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7-8):917-933.
[32] 许继峰, 王强. Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例[J]. 地学前缘, 2003, 10(4):401-406. Xu Jifeng, Wang Qiang. Tracing the thickening process of continental crust through studying Adakitic rocks:Evidence from volcanic rocks in the north tibet[J]. Earth Science Frontiers, 2003, 10(4):401-406.
[33] Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from centralwestern Qiangtang highK calcalkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1):158-171.
[34] Guan Qi, Zhu Dicheng, Zhao Zhidan, et al. Crustal thickening prior to 38 Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith[J]. Gondwana Research, 2012, 21(1):88-99.
[35] Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, et al. Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith[J]. Journal of Asian Earth Sciences, 2012, 53:82-95.
[36] Xu Q, Ding L, Hetzel R, et al. Low elevation of the northern Lhasa terrane in the Eocene:Implications for relief development in south Tibet[J]. Terra Nova, 2015, 27(6):458-466.
[37] Sun Jimin, Xu Qinghai, Liu Weiming, et al. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399:21-30.
[38] Jia Guodong, Bai Yang, Ma Yongjia, et al. Paleoelevation of Tibetan Lunpola basin in the OligoceneMiocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015, 126(5):14-22.
[39] Deng Tao, Wang Shiqi, Xie Guangpu, et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleoaltimetry[J]. Chinese Science Bulletin, 2012, 57(2):261-269.
[40] 张伟林. 柴达木盆地新生代高精度磁性地层与青藏高原隆升[D]. 兰州:兰州大学, 2006. Zhang Weilin. Cenozoic uplift of the Tibetan Plateau:Evidence from high resolution magnetostratigraphy of the Qaidam Basin[D]. Lanzhou:Lanzhou University, 2006.
[41] Dai S, Fang X M, Dupont-Nivet G, et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin:Tectonic implications for the northeastern Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B11):335-360.
[42] 方小敏, 宋春晖, 戴霜, 等. 青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J].地学前缘, 2007, 14(1):230-242. Fang Xiaomin, Song Chunhui, Dai Shuang, et al. Cenozoic deformation and uplift of the NE QinghaiTibetan Plateau:Evidence from high-resolution magnetostratigraphy and basin evolution[J]. Earth Science Frontiers, 2007, 14(1):230-242.
[43] Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10):12571295.
[44] Clark M K, Farley K A, Zheng D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1):78-88.
[45] 陈宣华, Michael W M, 李丽, 等. 东昆仑造山带多期隆升历史的地质热年代学证据[J]. 地质通报, 2011, 30(11):1647-1660. Chen X H, Michael W M, Li L, et al. Thermochronological evidence for multi-phase uplifting of the East Kunlun Mountains, northern Tibetan Plateau[J]. Geological Bulletin of China, 2011, 30(11):16471660.
[46] Wang Y D, Zheng J J, Zheng Y W, et al. Paleocene-Early Eocene uplift of the Altyn Tagh Mountain:Evidence from detrital zircon fission track analysis and seismic sections in the northwestern Qaidam Basin[J]. Journal of Geophysical Research(Solid Earth), 2015, 120(12):8534-8550.
[47] 戴霜, 方小敏, 宋春晖, 等. 青藏高原北部的早期隆升[J]. 科学通报, 2005, 50(7):673-683. Dai Shuang, Fang Xiaomin, Song Chunhui, et al. Early uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(7):673-683.
[48] Dupont Nivet G, Horton B K, Butler R F, et al. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B4):657-681.
[49] Fang Xiaomin, Wang Jiuyi, Zhang Weilin, et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research[J]. Global and Planetary Change, 2016, 145:7897.
[50] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, northcentral Tibet:Implications for the paleoaltimetry of the Eocene Tibetan Plateau[J]. The Journal of Geology, 2005, 113(5):517-533.
[51] Miao Yunfa, Wu Fuli, Chang Hong, et al. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation[J]. Gondwana Research, 2016, 31:241-252.
[52] Wang Chengshan, Li Xianghui, Hu Xiumian, et al. Latest marine horizon north of Qomolangma(Mt Everest):Implications for closure of Tethys seaway and collision tectonics[J]. Terra Nova, 2002, 14(2):114120.
[53] DeCelles P G, Kapp P, Quade J, et al. Oligocene-Miocene Kailas basin, southwestern Tibet:Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J]. Geological Society of America Bulletin, 2011, 123(7/8):1337-1362.
[54] Hou Zengqian, Zeng Pusheng, Gao Yongfeng, et al. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone:Constraints from Re-Os dating of molybdenite[J]. Minerlium Deposita, 2006, 41(1):33-45.
[55] Deng Jun, Wang Qingfei, Li Gongjian, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138:268-299.
[56] Tong Yabo, Yang Zhenyu, Jing Xianqing, et al. New insights into the Cenozoic lateral extrusion of crustal blocks on the southeastern edge of Tibetan Plateau:Evidence from paleomagnetic results from Paleogene sedimentary strata of the Baoshan Terrane[J]. Tectonics, 2016, 35:2494-2514.
[57] Burchfiel B C, Royden L H. North-south extension within the convergent Himalayan region[J]. Geology, 1985, 13(10):679-682.
[58] 吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1):3-32. Wu Fuyuan, Huang Baochun, Ye Kai, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau[J]. Acta Petrologica Sinica, 2008, 24(1):3-32.
[59] Blisniuk P M, Hacker B R, Glodny J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412(6847):628632.
[60] 喻学惠, 赵志丹, 莫宣学, 等. 甘肃西秦岭新生代钾霞橄黄长岩的40Ar/39Ar同位素定年及其地质意义[J]. 科学通报, 2005, 50(23):2638-2643. Yu Xuehui, Zhao Zhidan, Mo Xuanxue, et al. 40Ar/39Ar isotopic dating of the Cenozoic kamafugite in western Qinling area, Gansu Province and its geological meaning[J]. Chinese Science Bulletin, 2005, 50(23):2638-2643.
[61] Harrison T M, Copeland P, Kidd W S, et al. Raising Tibet[J]. Science, 1992, 255(5052):1663-1670.
[62] Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese Batholith, southern Tibet:A history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236.
[63] 袁万明, 王世成, 李胜荣, 等. 西藏冈底斯带构造活动的裂变径迹证据[J]. 科学通报, 2001, 46(20):1739-1742. Yuan Wanming, Wang Shicheng, Li Shengrong, et al. Apatite fission track dating evidence on the tectonization of Gangdese block, south QinghaiTibet Plateau[J]. Chinese Science Bulletin, 2002, 46(20):1739-1742.
[64] Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B9):18175-18201.
[65] Wang E Q, Kamp P J J, Xu G Q, et al. Flexural bending of southern Tibet in a retro foreland setting[J]. Scientific Reports, 2015, 5:12076.
[66] Zheng, H B, Cliftb P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7556-7561.
[67] Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogen[J]. Geology, 2005, 33(3):181-184.
[68] Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421(6923):622-624.
[69] Parrish R R, Hodges K V. Miocene (22±1 Ma) metamorphism and two stage thrusting in the Greater Himalayan sequence, Annapurna Sanctuary, Nepal[J]. Geological Society of America Abstract with Program, 1993, 25(6):174.
[70] Copeland P, Harrison T M. Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan[J]. Geology, 1990, 18(4):354-357.
[71] Hodges K, Bowring S, Davidek K, et al. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges[J]. Geology, 1998, 26(6):483-486.
[72] White N M, Pringle M, Garzanti E, et al. Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits[J]. Earth and Planetary Science Letters, 2002, 195(1):29-44.
[73] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36. Wu Fuyuan, Liu Zhichao, Liu Xiaochi, et al. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 2015, 31(1):1-36.
[74] 刘志飞, 王成善, 金玮, 等. 青藏高原沱沱河盆地渐新-中新世沉积环境分析[J]. 沉积学报, 2005, 23(2):210-216. Liu Zhifei, Wang Chengshan, JinWei, et al. Oligocene-Miocene depositional enviroment of the Tuotuohe Basin, central Tibetan Plateau[J]. Acta Sedimdientologic Sinica, 2005, 23(2):210-216.
[75] Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468.
[76] Yin A, Dang Y, Zhang M, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2):Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range[J]. Geological Society of America Special Papers, 2007, 433:369-390.
[77] Wang X M, Wang B Y, Qiu Z X, et al. Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 208(3):253-269.
[78] Fang Xiaomin, Zhang Weilin, Meng Qingquan, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1):293-306.
[79] Sun Jimin, Zhu Rixiang, An Zhisheng. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235(3):641-653.
[80] Jiang Hanchao, Ding Zhongli. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1):30-38.
[81] Ritts B D, Yue Y J, Graham S A, et al. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308(5):657-678.
[82] Lu Haijian, Xiong Shangfa. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288(3):539-550.
[83] Wang W T, Zhang P Z, Kirby E, et al. A revised chronology for Tertiary sedimentation in the Sikouzi basin:Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau[J]. Tectonophysics, 2011, 505(1):100-114.
[84] Lu Haijian, Wang Erchie, Shi Xuhua, et al. Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses[J]. Tectonophysics, 2012, 580(2):150-161.
[85] Lu Haijian, Wang Erchie, Meng Kai. Paleomagnetism and anisotropy of magnetic susceptibility of the Tertiary Janggalsay section (southeast Tarim basin):Implications for Miocene tectonic evolution of the Altyn Tagh Range[J]. Tectonophysics, 2014, 618(3):67-78.
[86] Chang Hong, Li Leyi, Qiang Xiaoke, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 430:271-283.
[87] George A D, Marshallsea S J, Wyrwoll K H, et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geology, 2001, 29(10):939-942.
[88] Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet:New constraints on the age of the Kunlun fault[J]. Tectonics, 2003, 22(5):1052.
[89] Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39(4):359-362.
[90] Fang X M, Yan M D, Van der Voo R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin, 2005, 117(9/10):12081225.
[91] Wang X X, Song C H, Zattin M, et al. Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fissiontrack thermochronology[J]. Tectonophysics, 2016, 672:212-227.
[92] Yin A, Nie S, Craig P, et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 1998, 17(1):1-27.
[93] Tang Z H, Ding Z L, White P D, et al. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan[J]. Earth and Planetary Science Letters, 2011, 302(3):439-447.
[94] Charreau J, Gilder S, Chen Y, et al. Magnetostratigraphy of the Yaha section, Tarim Basin (China):11 Ma acceleration in erosion and uplift of the Tian Shan mountains[J]. Geology, 2006, 34(3):181-184.
[95] Zhang T, Fang X M, Song C H, et al. Cenozoic tectonic deformation and uplift of the South Tian Shan:Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression[J]. Tectonophysics, 2014, 628:172-187.
[96] Wang Erchie, Wan Jinglin, Liu Jiaqi. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area:Constraints on timing of uplift of northern margin of the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B8):ETG l5-1.
[97] Sobel E R, Chen J, Heermance R V. Late Oligocene-Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan:Implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1):70-81.
[98] Amidon W H, Hynek S A. Exhumational history of the north central Pamir[J]. Tectonics, 2010, 29(5):5017.
[99] Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia:Thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1):77-102.
[100] Zhuang G S, Brandon M T, Pagani M, et al. Leaf wax stable isotopes from Northern Tibetan Plateau:Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390(4):186-198.
[101] Armijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in southern Tibet:Field observations and tectonic implications[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B14):1380313872.
[102] Molnar P, Lyon-Caent H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 1989, 99(1):123-153.
[103] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66.
[104] Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892):1054-1058.
[105] Burchfiel B C, Chen Z L. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland[J]. Geological Society of America, 2012, 210:1-231.
[106] 张培震, 张会平, 郑文俊, 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014, 36(3):574-585. Zhang Peizhen, Zhang Huiping, Zheng Wenjun, et al. Cenozoic tectonic evolution of continental Eastern Asia[J]. Seismology and Geology, 2014, 36(3):574-585.
[107] 李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15):1569-1574. Li Jijun, Fang Xiaomin. The study of uplift of Qinghai-Tibetan plateau and environment changes[J]. Chinese Science Bullettn, 1998, 43(15):1569-1574.
[108] Li Jijun. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change[M]. Lanzhou:Lanzhou University Press, 1995:1-207.
[109] 李吉均, 周尚哲, 赵志军, 等. 论青藏运动主幕[J]. 中国科学(地球科学), 2015, 10(15):1597-1608. Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang Movement:The major uplift of the QinghaiTibetan Plateau[J]. Science China(Earth Sciences), 2015, 10(15):1597-1608.
[110] Lavé J, Avouac J P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B3):5735-5770.
[111] Avouac J P. Dynamic processes in extensional and compressional settings-Mountain building:From earthquakes to geological deformation[J]. Treatise on Geophysics, 2007, 6:377-439.
[112] Mishra A, Srivastava D C, Shah J. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust:Evidence from the seismites in southeastern Kumaun Himalaya, India[J]. Sedimentary Geology, 2013, 289(2):148-158.
[113] Sakai H, Sakai H, Yahagi W, et al. Pleistocene rapid uplift of the Himalayan frontal ranges recorded in the Kathmandu and Siwalik basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1):16-27.
[114] Yue Leping, Deng Tao, Zhang Rui, et al. Paleomagnetic chronology and records of Himalayan uplift on the Longgugou section of Gyirong-Oma basin in Xizang (Tibet)[J]. 2004, 47(6):1009-1016.
[115] 朱大岗, 孟宪刚, 邵兆刚, 等. 西藏札达盆地形成演化与喜马拉雅山隆升[J]. 地球学报, 2006(3):193-200. Zhu Dagang, Meng Xiangang, Shao Zhaogang, et al. The Formation and evolution of Zhada Basin in Tibet and the uplift of the Himalayas[J]. Acta Geoscientica Sinica, 2006(3):193-200.
[116] Wang S F, Zhang W L, Fang X M et al. Magnetostratigraphy of the Zanda basin in southwest Tibet Plateau and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(9):1393-1400.
[117] 王国灿, 曹凯, 张克信, 等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学(地球科学), 2011, 41(3):332-349. Wang Guocan, Cao Kai, Zhang Kexin, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China(Earth Sciences), 2011, 41(3):332-349.
[118] Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma[J]. Geology, 2006, 34(4):309-312.
[119] Zhou Zhekun, Yang Qingsong, Xia Ke. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas[J]. Chinese Science Bullettn, 2007, 52(2):238-247.
[120] Zheng H B, Powell C M A, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000, 28(8):715-718.
[121] Sun Jimin, Liu Tungsheng. The age of the Taklimakan Desert[J]. Science, 2006, 312(5780):1621.
[122] Sun Jimin, Li Yang, Zhang Zhenqing, et al. Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains[J]. Geology, 2009, 37(11):1051-1054.
[123] Li C X, Guo Z J, Dupont Ni G. Late Cenozoic tectonic deformation across the northern foreland of the Chinese Tian Shan[J]. Journal of Asian Earth Sciences, 2011, 42(5):1066-1073.
[124] Tian Z H, Sun J M, Windley B F, et al. Cenozoic detachment folding in the southern Tianshan foreland, NW China:Shortening distances and rates[J]. Journal of Structural Geology, 2016, 84:142-161.
文章导航

/