[1] Taylor C W, Povall J M, McGale P, et al. Cardiac dose from tangential breast cancer radiotherapy in the year 2006[J]. International Journal of Radiation Oncology Biology Physics, 2008, 72(2):501-507.
[2] Mulrooney D A, Yeazel M W, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer:retro-spective analysis of the Childhood Cancer Survivor Study cohort[J]. The BMJ, 2009, 339:b4606.
[3] Swerdlow A J, Higgins C D, Smith P, et al. Myocardial infarction mor-tality risk after treatment for Hodgkin disease:A collaborative British cohort study[J]. Journal of National Cancer Institute, 2007, 99(3):206-214.
[4] Galper S L, Yu J B, Mauch P M, et al. Clinically significant cardiac dis-ease in patients with Hodgkin lymphoma treated with mediastinal irradi-ation[J]. Blood, 2011, 117(2):412-418.
[5] Tukenova M, Guibout C, Oberlin O, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer[J]. Journal of Clinical Oncology, 2010, 28(8):1308-1315.
[6] Laflamme M A, Murry C E. Heart regeneration[J]. Nature, 2011, 473(7347):326-335.
[7] Puente B N, Kimura W, Muralidhar S A, et al. The oxygen-rich postna-tal environment induces cardiomyocyte cell-cycle arrest through DNA damage response[J]. Cell, 2014, 157(3):565-579.
[8] Nikjoo H. Track structure in radiation biology:Theory and applications[J]. International Journal of Radiation Biology, 1998, 73(4):355-364.
[9] Asaithamby A, Chen D J. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation[J]. Muta-tion Research, 2011, 711(1-2):87-99.
[10] Asaithamby A. Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts[J]. Radiation Research, 2008, 169(4):437-446.
[11] Zhang Z L, Bai Z H, Wang X B, et al. miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the prolifera-tion and migration of cancer cells[J]. Public Liblary of Science, 2015, 10(3):e0118814.
[12] Firsanov D, Vasilishina A, Kropotov A, et al. Dynamics of gammaH2AX formation and elimination in mammalian cells after X-irradiation[J]. Biochimie, 2012, 94(11):2416-2422.
[13] Salata C, Ferreira-Machado S C, De Andrade C B, et al. Apoptosis in-duction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy[J]. International Journal of Radiation Biology, 2014, 90(4):284-290.
[14] Lee C L, Moding E J, Cuneo K C, et al. p53 functions in endothelial cells to prevent radiation-induced myocardial injury in mice[J]. Sci-ence Signaling, 2012, 5(234):ra52.
[15] Mitchel R E, Hasu M, Bugden M, et al. Low-dose radiation exposure and protection against atherosclerosis in ApoE-/-mice:The influence of P53 heterozygosity[J]. Radiation Research, 2013, 179(2):190-199.
[16] Chen Y R, Zweier J L. Cardiac mitochondria and reactive oxygen spe-cies generation[J]. Circulation Research, 2014, 114(3):524-537.
[17] Li Y, Wang X Y, Zhang Z L, et al. Excess ROS induced by AAPH causes myocardial hypertrophy in the developing chick embryo[J]. In-ternational Journal of Cardiology, 2014, 176(1):62-73.
[18] Bloom W, Zirkle R E, Uretz R B. Irradiation of parts of individual cells. III. Effects of chromosomal and extrachromosomal irradiation on chromosome movements[J]. Annals of the New York Academy Scienc-es, 1955, 59(4):503-513.
[19] Zhou H, Hong M, Chai Y, et al. Consequences of cytoplasmic irradia-tion:studies from microbeam[J]. Journal of Radiation Research, 2009, 50(Suppl A):A59-A65.
[20] Kulkarni R, Marples B, Balasubramaniam M, et al. Mitochondrial gene expression changes in normal and mitochondrial mutant cells af-ter exposure to ionizing radiation[J]. Radiation Research, 2010, 173(5):635-644.
[21] Piquereau J, Caffin F, Novotova M, et al. Mitochondrial dynamics in the adult cardiomyocytes:which roles for a highly specialized cell?[J]. Frontiers in Physiology, 2003, 4:102.
[22] Chen K, Keaney J F J r. Evolving concepts of oxidative stress and re-active oxygen species in cardiovascular disease[J]. Current Atheroscle-rosis Reports, 2012, 14(5):476-483.
[23] Genova M L, Pich M M, Bernacchia A. The mitochondrial production of reactive oxygen species in relation to aging and pathology[J]. An-nals of the New York Academy of Sciences, 2004, 1011(4):86-100.
[24] Indo H P, Inanami O, Koumura T, et al. Roles of mitochondria-gener-ated reactive oxygen species on X-ray-induced apoptosis in a human hepatocellular carcinoma cell line[J]. Free Radical Research, 2012, 46(8):1029-1043.
[25] Ogura A, Oowada S, Kon Y, et al. Redox regulation in radiation-in-duced cytochrome c release from mitochondria of human lung carcino-ma A549 cells[J]. Cancer Letters, 2009, 277(1):64-71.
[26] Kobashigawa S, Suzuki K, Yamashita S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission:Which involves delayed mito-chondrial reactive oxygen species production in normal human fibro-blast-like cells[J]. Biochemical and Biophys Research Communica-tions, 2011, 414(4):795-800.
[27] Zorov D B, Juhaszova M, Sollott S J. Mitochondrial ROS-induced ROS release:An update and review[J]. Biochimica et Biophysica Ccta, 2006, 1757(5-6):509-517.
[28] Zorov D B, Filburn C R, Klotz L O, et al. Reactive oxygen species (ROS)-induced ROS release:A new phenomenon accompanying induc-tion of the mitochondrial permeability transition in cardiac myocytes[J]. Journal of Experimental Medicine, 2000, 192(7):1001-1014.
[29] Canseco D C, Kimura W K, Garg S, et al. Human ventricular unload-ing induces cardiomyocyte proliferation[J]. Journal of the American College of Cardiology, 2015, 65(9):892-900.
[30] Senyo S E, Steinhauser M L, Pizzimenti C L, et al. Mammalian heart renewal by pre-existing cardiomyocytes[J]. Nature, 2013, 493(7432):433-436.
[31] Ali S R, Hippenmeyer S, Saadat L V, et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice[J]. PNAS, 2014, 111(24):8850-8855.
[32] Kimura W, Xiao F, Canseco D C, et al. Hypoxia fate mapping identi-fies cycling cardiomyocytes in the adult heart[J]. Nature, 2015, 523(7559):226-230.