[1] Kim D H, Lu N, Ma R, et al. Epidermal electronics[J]. Science, 2011, 333(6):838-843.
[2] Hung K, Lee C, Choy S O. Ubiquitous health monitoring:Integration of wearable sensors, novel sensing techniques, and body sensor networks[M]. Gewerbestrasse:Springer International Publishing, 2015:319-342.
[3] Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189.
[4] Konvalina G, Haick H. Sensors for breath testing:From nanomaterials to comprehensive disease detection[J]. Accounts of Chemical Research, 2013, 47(1):66-76.
[5] Qi D, Liu Z, Liu Y, et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors[J]. Advanced Materials, 2015, 27(37):5559-5566.
[6] Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors:Strategies, materials and devices[J]. Advanced Materials, 2015, 27(9):1480-1511.
[7] Xu F, Wang X, Zhu Y, et al. Wavy ribbons of carbon nanotubes for stretchable conductors[J]. Advanced Functional Materials, 2012, 22(6):1279-1283.
[8] Li R, Li M, Su Y, et al. An analytical mechanics model for the islandbridge structure of stretchable electronics[J]. Soft Matter, 2013, 9(35):8476-8482.
[9] Zhang Y, Xu S, Fu H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage[J]. Soft Matter, 2013, 9(33):8062-8070.
[10] Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar ser-pentine interconnects and integrated wireless recharging systems[J]. Nature communications, 2013, 4(2):1543.
[11] Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable self-simi-lar serpentine interconnects[J]. Acta Materialia, 2013, 61(20):7816-7827.
[12] Liu Y, Norton J J S, Qazi R, et al. Epidermal mechano-acoustic sens-ing electronics for cardiovascular diagnostics and human-machine in-terfaces[J]. Science Advances, 2016, 2(11):e1601185-e1601185.
[13] Yun D, Park J, Yun K S. Highly stretchable energy harvester using piezoelectric helical structure for wearable applications[J]. Electronics Letters, 2015, 51(3):284-285.
[14] Shang Y, Wang C, He X, et al. Self-stretchable, helical carbon nano-tube yarn supercapacitors with stable performance under extreme de-formation conditions[J]. Nano Energy, 2015, 12:401-409.
[15] Zhang Y, Huang Y, Rogers J A. Mechanics of stretchable batteries and supercapacitors[J]. Current Opinion in Solid State and Materials Science, 2015, 19(3):190-199.
[16] Huang X, Liu Y, Cheng H, et al. Materials and designs for wireless epidermal sensors of hydration and strain[J]. Advanced Functional Ma-terials, 2014, 24(25):3846-3854.
[17] Nemati E, Deen M J, Mondal T. A wireless wearable ecg sensor for long-term applications[J]. IEEE Communications Magazine, 2012, 50(1):36-43.
[18] Choi S, Jiang Z. A novel wearable sensor device with conductive fab-ric and pvdf film for monitoring cardiorespiratory signals[J]. Sensors and Actuators A:Physical, 2006, 128(2):317-326.
[19] Yang C C, Hsu Y L. A review of accelerometry-based wearable mo-tion detectors for physical activity monitoring[J]. Sensors, 2010, 10(8):7772-7788.
[20] Khan A M, Lee Y K, Lee S Y, et al. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hier-archical recognizer[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5):1166-1172.
[21] Paradiso R, Caldani L. Electronic textile platforms for monitoring in a natural environment[J]. Research Journal of Textile and Apparel, 2010, 14(4):9-21.
[22] Yeo W H, Kim Y S, Lee J W, et al. Multifunctional epidermal elec-tronics printed directly onto the skin[J]. Advanced Materials, 2013, 25(20):2773-2778.
[23] Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nature Materials, 2013, 12(10):938-944.
[24] Chen Y, Lu B, Chen Y, et al. Breathable and stretchable temperature sensors inspired by skin[J]. Scientific reports, 2015, 5:11505.
[25] Huang X, Yeo W H, Liu Y, et al. Epidermal differential impedance sensor for conformal skin hydration monitoring[J]. Biointerphases, 2012, 7(1):52.
[26] Huang X, Cheng H, Chen K, et al. Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10):2848-2857.
[27] Pantelopoulos A, Bourbakis N G. A survey on wearable sensor-based systems for health monitoring and prognosis[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2010, 40(1):1-12.
[28] Chen W, Ayoola I, Oetomo S B, et al. Non-invasive blood oxygen satu-ration monitoring for neonates using reflectance pulse oximeter[J]. Chemical Engineering Journal, 2010, 255(7):1530-1535.
[29] Yilmaz T, Foster R, Hao Y. Detecting vital signs with wearable wire-less sensors[J]. Sensors, 2009, 10(12):10837-10862.
[30] Corbishley P, Rodríguezvillegas E. Breathing detection:Towards a min-iaturized, wearable, battery-operated monitoring system[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(1):196-204.
[31] Kudo H, Sawada T, Kazawa E, et al. A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques[J]. Bi-osensors and Bioelectronics, 2006, 22(4):558-562.
[32] Pu Z, Wang R, Wu J, et al. A flexible electrochemical glucose sensor with composite nanostructured surface on the working electrode[J]. Sen-sors and Actuators B(Chemical), 2016, 230:801-809.
[33] Sharma A C, Jana T, Kesavamoorthy R, et al. A general photonic crys-tal sensing motif:Creatinine in bodily fluids[J]. Journal of the Ameri-can Chemical Society, 2004, 126(9):2971-2977.
[34] Oncescu V, O'Dell D, Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva[J]. Lab on A Chip, 2013, 13(16):3232-3238.
[35] Paska Y, Stelzner T, Christiansen S, et al. Enhanced sensing of nonpo-lar volatile organic compounds by silicon nanowire field effect transis-tors[J]. American Chemical Society Nano, 2011, 5(7):5620-5626.
[36] Tsow F, Forzani E, Rai A, et al. A wearable and wireless sensor sys-tem for real-time monitoring of toxic environmental volatile organic compounds[J]. Sensors Journal IEEE, 2009, 9(12):1734-1740.
[37] Feng L, Musto C J, Kemling J W, et al. A colorimetric sensor array for identification of toxic gases below permissible exposure limits[J]. Chemical Communications, 2010, 46(12):2037-2039.
[38] Saxl T, Khan F, Matthews D R, et al. Fluorescence lifetime spectrosco-py and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein[J]. Biosensors and Bioelec-tronics, 2009, 24(11):3229-3234.
[39] Ahmadi M M, Jullien G A. A wireless-implantable microsystem for continuous blood glucose monitoring[J]. IEEE Transactions on Biomedi-cal Circuits and Systems, 2009, 3(3):169-180.
[40] Huang X, Li S, Schultz J S, et al. A MEMS affinity glucose sensor us-ing a biocompatible glucose-responsive polymer[J]. Sensors and Actua-tors B(Chemical), 2009, 140(2):603-609.
[41] Barone P W, Strano M S. Reversible control of carbon nanotube aggre-gation for a glucose affinity sensor[J]. Angewandte Chemie Internation-al Edition, 2006, 45(48):8138-8141.
[42] Yu B, Long N, Moussy Y, et al. A long-term flexible minimally-inva-sive implantable glucose biosensor based on an epoxy-enhanced poly-urethane membrane[J]. Biosensors and Bioelectronics, 2006, 21(12):2275-2282.
[43] Aurel Y, Jan G, Paul V L, et al. Fast, ultrasensitive virus detection us-ing a young interferometer sensor[J]. Nano Letters, 2007, 7(2):394-397.
[44] Isella L, Romano M, Barrat A, et al. Close encounters in a pediatric ward:Measuring face-to-face proximity and mixing patterns with wear-able sensors[J]. Public Library of Science One, 2011, 6(2):17144.
[45] Tantama M, Yin P H, Yellen G. Imaging intracellular PH in live cells with a genetically encoded red fluorescent protein sensor[J]. Journal of the American Chemical Society, 2011, 133(26):10034-10037.
[46] He Q. Graphene-based electronic sensors[J]. Chemical Science, 2012, 3(6):1764-1772.
[47] James S S, Yi X, Brian S F, et al. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor[J]. Journal of the American Chemical Society, 2009, 131(12):4262-4266.
[48] Qu K, Wang J, Ren P J, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine[J]. Chemistry, 2013, 19(22):7243-7249.
[49] Mostafalu P, Lenk W, Dokmeci M R, et al. Wireless flexible smart bandage for continuous monitoring of wound oxygenation[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(5):670-677.
[50] Kwak M K, Jeong H E, Suh K Y. Rational design and enhanced bio-compatibility of a dry adhesive medical skin patch[J]. Advanced Mate-rials, 2011, 23(34):3949-3953.
[51] Joseph W M, Yang W, Russel T, et al. Wearable EEG headband us-ing printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living[J]. Smart Materials and Struc-tures, 2015, 24(12):125028.
[52] Lee A Y, Eun H C, Kim H O, et al. Multicenter study of the frequen-cy of contact allergy to gold[J]. Contact dermatitis, 2001, 45(4):214-216.
[53] Möller H. Contact allergy to gold as a model for clinical-experimental research[J]. Contact Dermatitis, 2010, 62(4):193-200.
[54] Jang K I, Han S Y, Xu S, et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcu-taneous monitoring[J]. Nature Communications, 2014, 5(5):4779-4779.
[55] Pang C Y, Lee G Y, Kim T I, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Na-ture Materials, 2012, 11(9):795-801.
[56] Kim J, Lee M, Shim H J, et al. Stretchable silicon nanoribbon electron-ics for skin prosthesis[J]. Nature Communications, 2014, 5(5):5747-5747.
[57] Du D, Li P, Ouyang J. Graphene coated nonwoven fabrics as wearable sensors[J]. Journal of Materials Chemistry C, 2016, 4(15):3224-3230.
[58] Ge J, Sun L, Zhang F R, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2015, 28(4):722-728.
[59] Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive tex-tile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15):2433-2439.
[60] Paradiso R, Loriga G, Taccini N. A wearable health care system based on knitted integrated sensors[J]. IEEE Transactions on Information Technology in Biomedicine, 2005, 9(3):337-344.
[61] Malhi K, Mukhopadhyay S C, Schnepper J, et al. A zigbee-based wearable physiological parameters monitoring system[J]. IEEE Sensors Journal, 2012, 12(3):423-430.
[62] Bai S, Zhang L, Xu Q, et al. Two dimensional woven nanogenerator[J]. Nano Energy, 2013, 2(5):749-753.
[63] Coyle S, Lau K T, Moyna N, et al. Biotex-biosensing textiles for per-sonalised healthcare management[J]. IEEE Transactions on Informa-tion Technology in Biomedicine, 2010, 14(2):364-370.
[64] Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors[J]. American Chemical Society Nano, 2013, 7(12):11166-11173.
[65] Zheng Y L, Yan B P, Zhang Y T, et al. An armband wearable device for overnight and cuff-less blood pressure measurement[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(7):2179-2186.
[66] Jung S, Hong S, Kim J, et al. Wearable fall detector using integrated sensors and energy devices[J]. Scientific Reports, 2015, 5:17081.
[67] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nano-technology, 2011, 6(5):296-301.
[68] Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 52(7):iv48-iv50.
[69] Swain P. The future of wireless capsule endoscopy[J]. World Journal of Gastroenterology, 2008, 14(26):4142-4145.
[70] Ciuti G, Menciassi A, Dario P. Capsule endoscopy:From current achievements to open challenges[J]. IEEE Reviews in Biomedical Engi-neering, 2011, 4:59-72.
[71] Gough D A, Kumosa L S, Routh T L, et al. Function of an implanted tissue glucose sensor for more than 1 year in animals[J]. Science Translational Medicine, 2010, 2(42):42ra53-42ra53.
[72] Kwak Y H, Choi D S, Kim Y N, et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor[J]. Biosensors and Bioelectronics, 2012, 37(1):82-87.
[73] Heo Y J, Takeuchi S. Towards smart tattoos:Implantable biosensors for continuous glucose monitoring[J]. Advanced Healthcare Materials, 2013, 2(1):43-56.
[74] Kim T I, McCall J G, Jung Y H, et al. Injectable, cellular-scale opto-electronics with applications for wireless optogenetics[J]. Science, 2013, 340(6129):211-216.
[75] Xie C, Liu J, Fu T M, et al. Three-dimensional macroporous nanoelec-tronic networks as minimally invasive brain probes[J]. Nature Materi-als, 2015, 14(12):1286-1292.
[76] Park S I, Brenner D S, Shin G, et al. Soft, stretchable, fully implant-able miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 2015, 33(12):1280-1286.
[77] Kim D H, Lu N, Ghaffari R, et al. Materials for multifunctional bal-loon catheters with capabilities in cardiac electrophysiological map-ping and ablation therapy[J]. Nature Materials, 2011, 10(4):316-323.
[78] Kim D H, Ghaffari R, Lu N, et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy[J]. Proceedings of the National Academy of Sciences, 2012, 109(49):19910-19915.
[79] Xu L, Gutbrod S R, Bonifas A P, et al. 3d multifunctional integumen-tary membranes for spatiotemporal cardiac measurements and stimula-tion across the entire epicardium[J]. Nature Communications, 2014, 5:3329.
[80] Koh A, Gutbrod S R, Meyers J D, et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac abla-tion monitoring[J]. Advanced Healthcare Materials, 2016, 5(3):373-381.
[81] Hwang S W, Tao H, Kim D H, et al. A physically transient form of sil-icon electronics[J]. Science, 2012, 337(6102):1640-1644.
[82] Boulos M N K, Wheeler S, Tavares C, et al. How smartphones are changing the face of mobile and participatory healthcare:An overview, with example from ecaalyx[J]. BioMedical Engineering OnLine, 2011, 10(1):24.
[83] Higgins J P. Smartphone applications for patients' health and fitness[J]. American Journal of Medicine, 2016, 129(1):11-9.
[84] Register J K, Fales A M, Wang H N, et al. In vivo detection of SERSencoded plasmonic nanostars in human skin grafts and live animal models[J]. Analytical and Bioanalytical Chemistry, 2015, 407(27):8215-8224.
[85] Unruh R M, Roberts J R, Nichols S P, et al. Preclinical evaluation of poly (hema-co-acrylamide) hydrogels encapsulating glucose oxidase and palladium benzoporphyrin as fully implantable glucose sensors[J]. Journal of Diabetes Science And Technology, 2015, 9(5):985-992.
[86] Jin H, Huynh T P, Haick H. Self-healable sensors based nanoparti-cles for detecting physiological markers via skin and breath:Toward disease prevention via wearable devices[J]. Nano Letters, 2016, 16(7):4194-4202.
[87] Rai P, Oh S, Shyamkumar P, et al. Nano-bio-textile sensors with mo-bile wireless platform for wearable health monitoring of neurological and cardiovascular disorders[J]. Journal of The Electrochemical Soci-ety, 2014, 161(2):B3116-B3150.
[88] Mariani B, Jiménez M C, Vingerhoets F J, et al. On-shoe wearable sensors for gait and turning assessment of patients with parkinson's disease[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(1):155-158.
[89] Maetzler W, Domingos J, Srulijes K, et al. Quantitative wearable sen-sors for objective assessment of parkinson's disease[J]. Movement Dis-orders, 2013, 28(12):1628-1637.
[90] Cobelli C, Renard E, Kovatchev B P, et al. Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes[J]. Diabetes Care, 2012, 35(9):e65-e67.
[91] Cannon J G. Goodman and gilman's the pharmacological basis of thera-peutics. 11th edition[J]. Journal of Medicinal Chemistry, 2006, 49(3):1222.
[92] Ossig C, Antonini A, Buhmann C, et al. Wearable sensor-based objec-tive assessment of motor symptoms in Parkinson's disease[J]. Journal of Neural Transmission, 2015, 123(1):1-8.
[93] Klucken J, Barth J, Kugler P, et al. Unbiased and mobile gait analysis detects motor impairment in Parkinson's disease[J]. PLOS ONE, 2013, 8(2):e56956.
[94] Taylorpiliae R E, Mohler M J, Najafi B, et al. Objective fall risk detec-tion in stroke survivors using wearable sensor technology:A feasibility study[J]. Topics in Stroke Rehabilitation, 2015, 23(6):393-399.
[95] Bandodkar A J, Jia W, Wang X, et al. Tattoo-based noninvasive glu-cose monitoring:A proof-of-concept study[J]. Analytical Chemistry, 2015, 87(1):394-398.
[96] Ghasemzadeh H, Jafari R. Coordination analysis of human movements with body sensor networks:A signal processing model to evaluate base-ball swings[J]. IEEE Sensors Journal, 2011, 11(3):603-610.
[97] Rowlands D D, James D A, Lee J B. Visualization of wearable sensor data during swimming for performance analysis[J]. Sports Technology, 2013, 6(3):130-136.
[98] Brock H, Ohgi Y, Seo K. Development of an automated motion evalua-tion system from wearable sensor devices for ski jumping[J]. Procedia Engineering, 2016, 147:694-699.
[99] Chardonnens J, Favre J, Cuendet F, et al. Measurement of the dynam-ics in ski jumping using a wearable inertial sensor-based system[J]. Journal of Sports Sciences, 2014, 32(6):591-600.
[100] Chambers R, Gabbett T J, Cole M H, et al. The use of wearable mi-crosensors to quantify sport-specific movements[J]. Sports Medicine, 2015, 45(7):1065-1081.
[101] Driller M, Borges N, Plews D. Evaluating a new wearable lactate threshold sensor in recreational to highly trained cyclists[J]. Sports Engineering, 2016, 19(4):1-7.
[102] Zhou Y, Han H, Naw H P P, et al. Real-time colorimetric hydration sensor for sport activities[J]. Materials and Design, 2016, 90:1181-1185.
[103] Chaussabel D, Pulendran B. A vision and a prescription for big dataenabled medicine[J]. Nature Immunology, 2015, 16(5):435-439.
[104] Raj P, Raman A, Nagaraj D, et al. Big data analytics for healthcare[M]. Gewerbestrasse:Springer, 2015:391-424.
[105] Miller A. The future of health care could be elementary with watson[J]. Canadian Medical Association Journal, 2013, 185(9):E367-E368.
[106] Bae J, Song M K, Park Y J, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angewandte Chemie, 2011, 50(7):1683-1687.
[107] Fu Y, Cai X, Wu H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Advanced Materials, 2012, 24(42):5713-5718.
[108] Kim B J, Dong H K, Lee Y Y, et al. Highly efficient and bending du-rable perovskite solar cells:Toward a wearable power source[J]. Ener-gy and Environmental Science, 2014, 8(3):677-1048.
[109] Jung H S, Park N G. Perovskite solar cells:From materials to devices[J]. Small, 2015, 11(1):10-25.
[110] Weber J, Potje K K, Haase F, et al. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics[J]. Sensors and Actuators A(Physical), 2006, 132(1):325-330.
[111] Wang Z, Leonov V, Fiorini P, et al. Realization of a wearable minia-turized thermoelectric generator for human body applications[J]. Sen-sors and Actuators A Physical, 2009, 156(1):95-102.
[112] Cao X, Chiang W J, King Y C, et al. Electromagnetic energy harvest-ing circuit with feedforward and feedback DC-DC PWM boost con-verter for vibration power generator system[J]. IEEE Transactions on Power Electronics, 2007, 22(2):679-685.
[113] Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric pow-er generator array for vibration energy harvesting[J]. Microelectronics Journal, 2008, 39(5):802-806.
[114] Huang X, Liu Y, Kong G W, et al. Epidermal radio frequency elec-tronics for wireless power transfer[J]. Microsystems & Nanoengineer-ing, 2016, 2:16052.
[115] Ho J S, Yeh A J, Neofytou E, et al. Wireless power transfer to deeptissue microimplants[J]. Proceedings of the National Academy of Sci-ences, 2014, 111(22):7974-9.
[116] Cortez N G, Cohen I G, Kesselheim A S. FDA regulation of mobile health technologies[J]. New England Journal of Medicine, 2014, 371(4):372-379.
[117] McCartney M. How do we know whether medical apps work?[J]. Brit-ish Medical Journal, 2013, 346(6):f1974.