研究论文

可穿戴传感器进展、挑战和发展趋势

  • 曾天禹 ,
  • 黄显
展开
  • 天津大学精密仪器与光电子工程学院, 天津 300072
曾天禹,硕士研究生,研究方向为柔性环境传感器,电子信箱:zengtianyu@tju.edu.cn

收稿日期: 2016-11-02

  修回日期: 2016-12-18

  网络出版日期: 2017-02-16

基金资助

国家自然科学基金项目(61604108)

Development, challenges, and future trends of wearable sensors

  • ZENG Tianyu ,
  • HUANG Xian
Expand
  • School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China

Received date: 2016-11-02

  Revised date: 2016-12-18

  Online published: 2017-02-16

摘要

可穿戴传感器是近年来高速发展的传感器技术。其功能、原理和形态各异,并已经广泛应用于国民生活和生产的多个方面。本文结合大量商业化和处于研究阶段的可穿戴产品和器件,简述了可穿戴传感器的主要形式,列举了可穿戴设备的常用测量方法。根据可穿戴传感器及人体的接触方式,将其划分为皮肤接触式传感器、非直接接触式传感器和植入式传感器,结合现有商业化产品及实验室中研究成果,展示了现今可穿戴设备在日常健康、医疗、运动科学、工业和军事等方面的广泛应用。认为可穿戴传感器技术将会在未来同大数据与精准医疗实现更高程度的结合,更好地服务于长期动态的人体信息和环境信息的采集。

本文引用格式

曾天禹 , 黄显 . 可穿戴传感器进展、挑战和发展趋势[J]. 科技导报, 2017 , 35(2) : 19 -32 . DOI: 10.3981/j.issn.1000-7857.2017.02.002

Abstract

Wearable sensors are under a rapid development in recent years with various sensing functions, principles, and formats. They can be widely used in many aspects of daily life and industry. This paper introduces various wearable electronic sensors and their typical measurement approaches based on a comprehensive review of the state-of-the-art commercial products and devices under exploration. The wearable sensors can be further categorized as the skin sensors, the indirect skin contact sensors, and the implantable sensors, as can be demonstrated by a large number of commercialized devices and laboratorial prototypes used in areas such as the daily health management, the healthcare, the sports science, the industry, and the military fields. This paper proposes a combination of the wearable sensing technology and the big data and the precision medicine for the long term dynamic information collection of both human bodies and environment. Highly integrated wearable sensors and the multi signal detection will be one of the future development trends for wearable sensors, but several challenges such as the energy supplies, the data security, and the establishment of the standards still require a further breakthrough. The development of the wearable sensor industry in China demands the support of the entire industrial chain. In completing the chain, wearable devices have important and persistent influence on the economic and social development in China.

参考文献

[1] Kim D H, Lu N, Ma R, et al. Epidermal electronics[J]. Science, 2011, 333(6):838-843.
[2] Hung K, Lee C, Choy S O. Ubiquitous health monitoring:Integration of wearable sensors, novel sensing techniques, and body sensor networks[M]. Gewerbestrasse:Springer International Publishing, 2015:319-342.
[3] Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189.
[4] Konvalina G, Haick H. Sensors for breath testing:From nanomaterials to comprehensive disease detection[J]. Accounts of Chemical Research, 2013, 47(1):66-76.
[5] Qi D, Liu Z, Liu Y, et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors[J]. Advanced Materials, 2015, 27(37):5559-5566.
[6] Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors:Strategies, materials and devices[J]. Advanced Materials, 2015, 27(9):1480-1511.
[7] Xu F, Wang X, Zhu Y, et al. Wavy ribbons of carbon nanotubes for stretchable conductors[J]. Advanced Functional Materials, 2012, 22(6):1279-1283.
[8] Li R, Li M, Su Y, et al. An analytical mechanics model for the islandbridge structure of stretchable electronics[J]. Soft Matter, 2013, 9(35):8476-8482.
[9] Zhang Y, Xu S, Fu H, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage[J]. Soft Matter, 2013, 9(33):8062-8070.
[10] Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar ser-pentine interconnects and integrated wireless recharging systems[J]. Nature communications, 2013, 4(2):1543.
[11] Zhang Y, Fu H, Su Y, et al. Mechanics of ultra-stretchable self-simi-lar serpentine interconnects[J]. Acta Materialia, 2013, 61(20):7816-7827.
[12] Liu Y, Norton J J S, Qazi R, et al. Epidermal mechano-acoustic sens-ing electronics for cardiovascular diagnostics and human-machine in-terfaces[J]. Science Advances, 2016, 2(11):e1601185-e1601185.
[13] Yun D, Park J, Yun K S. Highly stretchable energy harvester using piezoelectric helical structure for wearable applications[J]. Electronics Letters, 2015, 51(3):284-285.
[14] Shang Y, Wang C, He X, et al. Self-stretchable, helical carbon nano-tube yarn supercapacitors with stable performance under extreme de-formation conditions[J]. Nano Energy, 2015, 12:401-409.
[15] Zhang Y, Huang Y, Rogers J A. Mechanics of stretchable batteries and supercapacitors[J]. Current Opinion in Solid State and Materials Science, 2015, 19(3):190-199.
[16] Huang X, Liu Y, Cheng H, et al. Materials and designs for wireless epidermal sensors of hydration and strain[J]. Advanced Functional Ma-terials, 2014, 24(25):3846-3854.
[17] Nemati E, Deen M J, Mondal T. A wireless wearable ecg sensor for long-term applications[J]. IEEE Communications Magazine, 2012, 50(1):36-43.
[18] Choi S, Jiang Z. A novel wearable sensor device with conductive fab-ric and pvdf film for monitoring cardiorespiratory signals[J]. Sensors and Actuators A:Physical, 2006, 128(2):317-326.
[19] Yang C C, Hsu Y L. A review of accelerometry-based wearable mo-tion detectors for physical activity monitoring[J]. Sensors, 2010, 10(8):7772-7788.
[20] Khan A M, Lee Y K, Lee S Y, et al. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hier-archical recognizer[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5):1166-1172.
[21] Paradiso R, Caldani L. Electronic textile platforms for monitoring in a natural environment[J]. Research Journal of Textile and Apparel, 2010, 14(4):9-21.
[22] Yeo W H, Kim Y S, Lee J W, et al. Multifunctional epidermal elec-tronics printed directly onto the skin[J]. Advanced Materials, 2013, 25(20):2773-2778.
[23] Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nature Materials, 2013, 12(10):938-944.
[24] Chen Y, Lu B, Chen Y, et al. Breathable and stretchable temperature sensors inspired by skin[J]. Scientific reports, 2015, 5:11505.
[25] Huang X, Yeo W H, Liu Y, et al. Epidermal differential impedance sensor for conformal skin hydration monitoring[J]. Biointerphases, 2012, 7(1):52.
[26] Huang X, Cheng H, Chen K, et al. Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10):2848-2857.
[27] Pantelopoulos A, Bourbakis N G. A survey on wearable sensor-based systems for health monitoring and prognosis[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2010, 40(1):1-12.
[28] Chen W, Ayoola I, Oetomo S B, et al. Non-invasive blood oxygen satu-ration monitoring for neonates using reflectance pulse oximeter[J]. Chemical Engineering Journal, 2010, 255(7):1530-1535.
[29] Yilmaz T, Foster R, Hao Y. Detecting vital signs with wearable wire-less sensors[J]. Sensors, 2009, 10(12):10837-10862.
[30] Corbishley P, Rodríguezvillegas E. Breathing detection:Towards a min-iaturized, wearable, battery-operated monitoring system[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(1):196-204.
[31] Kudo H, Sawada T, Kazawa E, et al. A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques[J]. Bi-osensors and Bioelectronics, 2006, 22(4):558-562.
[32] Pu Z, Wang R, Wu J, et al. A flexible electrochemical glucose sensor with composite nanostructured surface on the working electrode[J]. Sen-sors and Actuators B(Chemical), 2016, 230:801-809.
[33] Sharma A C, Jana T, Kesavamoorthy R, et al. A general photonic crys-tal sensing motif:Creatinine in bodily fluids[J]. Journal of the Ameri-can Chemical Society, 2004, 126(9):2971-2977.
[34] Oncescu V, O'Dell D, Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva[J]. Lab on A Chip, 2013, 13(16):3232-3238.
[35] Paska Y, Stelzner T, Christiansen S, et al. Enhanced sensing of nonpo-lar volatile organic compounds by silicon nanowire field effect transis-tors[J]. American Chemical Society Nano, 2011, 5(7):5620-5626.
[36] Tsow F, Forzani E, Rai A, et al. A wearable and wireless sensor sys-tem for real-time monitoring of toxic environmental volatile organic compounds[J]. Sensors Journal IEEE, 2009, 9(12):1734-1740.
[37] Feng L, Musto C J, Kemling J W, et al. A colorimetric sensor array for identification of toxic gases below permissible exposure limits[J]. Chemical Communications, 2010, 46(12):2037-2039.
[38] Saxl T, Khan F, Matthews D R, et al. Fluorescence lifetime spectrosco-py and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein[J]. Biosensors and Bioelec-tronics, 2009, 24(11):3229-3234.
[39] Ahmadi M M, Jullien G A. A wireless-implantable microsystem for continuous blood glucose monitoring[J]. IEEE Transactions on Biomedi-cal Circuits and Systems, 2009, 3(3):169-180.
[40] Huang X, Li S, Schultz J S, et al. A MEMS affinity glucose sensor us-ing a biocompatible glucose-responsive polymer[J]. Sensors and Actua-tors B(Chemical), 2009, 140(2):603-609.
[41] Barone P W, Strano M S. Reversible control of carbon nanotube aggre-gation for a glucose affinity sensor[J]. Angewandte Chemie Internation-al Edition, 2006, 45(48):8138-8141.
[42] Yu B, Long N, Moussy Y, et al. A long-term flexible minimally-inva-sive implantable glucose biosensor based on an epoxy-enhanced poly-urethane membrane[J]. Biosensors and Bioelectronics, 2006, 21(12):2275-2282.
[43] Aurel Y, Jan G, Paul V L, et al. Fast, ultrasensitive virus detection us-ing a young interferometer sensor[J]. Nano Letters, 2007, 7(2):394-397.
[44] Isella L, Romano M, Barrat A, et al. Close encounters in a pediatric ward:Measuring face-to-face proximity and mixing patterns with wear-able sensors[J]. Public Library of Science One, 2011, 6(2):17144.
[45] Tantama M, Yin P H, Yellen G. Imaging intracellular PH in live cells with a genetically encoded red fluorescent protein sensor[J]. Journal of the American Chemical Society, 2011, 133(26):10034-10037.
[46] He Q. Graphene-based electronic sensors[J]. Chemical Science, 2012, 3(6):1764-1772.
[47] James S S, Yi X, Brian S F, et al. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor[J]. Journal of the American Chemical Society, 2009, 131(12):4262-4266.
[48] Qu K, Wang J, Ren P J, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine[J]. Chemistry, 2013, 19(22):7243-7249.
[49] Mostafalu P, Lenk W, Dokmeci M R, et al. Wireless flexible smart bandage for continuous monitoring of wound oxygenation[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(5):670-677.
[50] Kwak M K, Jeong H E, Suh K Y. Rational design and enhanced bio-compatibility of a dry adhesive medical skin patch[J]. Advanced Mate-rials, 2011, 23(34):3949-3953.
[51] Joseph W M, Yang W, Russel T, et al. Wearable EEG headband us-ing printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living[J]. Smart Materials and Struc-tures, 2015, 24(12):125028.
[52] Lee A Y, Eun H C, Kim H O, et al. Multicenter study of the frequen-cy of contact allergy to gold[J]. Contact dermatitis, 2001, 45(4):214-216.
[53] Möller H. Contact allergy to gold as a model for clinical-experimental research[J]. Contact Dermatitis, 2010, 62(4):193-200.
[54] Jang K I, Han S Y, Xu S, et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcu-taneous monitoring[J]. Nature Communications, 2014, 5(5):4779-4779.
[55] Pang C Y, Lee G Y, Kim T I, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Na-ture Materials, 2012, 11(9):795-801.
[56] Kim J, Lee M, Shim H J, et al. Stretchable silicon nanoribbon electron-ics for skin prosthesis[J]. Nature Communications, 2014, 5(5):5747-5747.
[57] Du D, Li P, Ouyang J. Graphene coated nonwoven fabrics as wearable sensors[J]. Journal of Materials Chemistry C, 2016, 4(15):3224-3230.
[58] Ge J, Sun L, Zhang F R, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2015, 28(4):722-728.
[59] Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive tex-tile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15):2433-2439.
[60] Paradiso R, Loriga G, Taccini N. A wearable health care system based on knitted integrated sensors[J]. IEEE Transactions on Information Technology in Biomedicine, 2005, 9(3):337-344.
[61] Malhi K, Mukhopadhyay S C, Schnepper J, et al. A zigbee-based wearable physiological parameters monitoring system[J]. IEEE Sensors Journal, 2012, 12(3):423-430.
[62] Bai S, Zhang L, Xu Q, et al. Two dimensional woven nanogenerator[J]. Nano Energy, 2013, 2(5):749-753.
[63] Coyle S, Lau K T, Moyna N, et al. Biotex-biosensing textiles for per-sonalised healthcare management[J]. IEEE Transactions on Informa-tion Technology in Biomedicine, 2010, 14(2):364-370.
[64] Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors[J]. American Chemical Society Nano, 2013, 7(12):11166-11173.
[65] Zheng Y L, Yan B P, Zhang Y T, et al. An armband wearable device for overnight and cuff-less blood pressure measurement[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(7):2179-2186.
[66] Jung S, Hong S, Kim J, et al. Wearable fall detector using integrated sensors and energy devices[J]. Scientific Reports, 2015, 5:17081.
[67] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nano-technology, 2011, 6(5):296-301.
[68] Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 52(7):iv48-iv50.
[69] Swain P. The future of wireless capsule endoscopy[J]. World Journal of Gastroenterology, 2008, 14(26):4142-4145.
[70] Ciuti G, Menciassi A, Dario P. Capsule endoscopy:From current achievements to open challenges[J]. IEEE Reviews in Biomedical Engi-neering, 2011, 4:59-72.
[71] Gough D A, Kumosa L S, Routh T L, et al. Function of an implanted tissue glucose sensor for more than 1 year in animals[J]. Science Translational Medicine, 2010, 2(42):42ra53-42ra53.
[72] Kwak Y H, Choi D S, Kim Y N, et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor[J]. Biosensors and Bioelectronics, 2012, 37(1):82-87.
[73] Heo Y J, Takeuchi S. Towards smart tattoos:Implantable biosensors for continuous glucose monitoring[J]. Advanced Healthcare Materials, 2013, 2(1):43-56.
[74] Kim T I, McCall J G, Jung Y H, et al. Injectable, cellular-scale opto-electronics with applications for wireless optogenetics[J]. Science, 2013, 340(6129):211-216.
[75] Xie C, Liu J, Fu T M, et al. Three-dimensional macroporous nanoelec-tronic networks as minimally invasive brain probes[J]. Nature Materi-als, 2015, 14(12):1286-1292.
[76] Park S I, Brenner D S, Shin G, et al. Soft, stretchable, fully implant-able miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 2015, 33(12):1280-1286.
[77] Kim D H, Lu N, Ghaffari R, et al. Materials for multifunctional bal-loon catheters with capabilities in cardiac electrophysiological map-ping and ablation therapy[J]. Nature Materials, 2011, 10(4):316-323.
[78] Kim D H, Ghaffari R, Lu N, et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy[J]. Proceedings of the National Academy of Sciences, 2012, 109(49):19910-19915.
[79] Xu L, Gutbrod S R, Bonifas A P, et al. 3d multifunctional integumen-tary membranes for spatiotemporal cardiac measurements and stimula-tion across the entire epicardium[J]. Nature Communications, 2014, 5:3329.
[80] Koh A, Gutbrod S R, Meyers J D, et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac abla-tion monitoring[J]. Advanced Healthcare Materials, 2016, 5(3):373-381.
[81] Hwang S W, Tao H, Kim D H, et al. A physically transient form of sil-icon electronics[J]. Science, 2012, 337(6102):1640-1644.
[82] Boulos M N K, Wheeler S, Tavares C, et al. How smartphones are changing the face of mobile and participatory healthcare:An overview, with example from ecaalyx[J]. BioMedical Engineering OnLine, 2011, 10(1):24.
[83] Higgins J P. Smartphone applications for patients' health and fitness[J]. American Journal of Medicine, 2016, 129(1):11-9.
[84] Register J K, Fales A M, Wang H N, et al. In vivo detection of SERSencoded plasmonic nanostars in human skin grafts and live animal models[J]. Analytical and Bioanalytical Chemistry, 2015, 407(27):8215-8224.
[85] Unruh R M, Roberts J R, Nichols S P, et al. Preclinical evaluation of poly (hema-co-acrylamide) hydrogels encapsulating glucose oxidase and palladium benzoporphyrin as fully implantable glucose sensors[J]. Journal of Diabetes Science And Technology, 2015, 9(5):985-992.
[86] Jin H, Huynh T P, Haick H. Self-healable sensors based nanoparti-cles for detecting physiological markers via skin and breath:Toward disease prevention via wearable devices[J]. Nano Letters, 2016, 16(7):4194-4202.
[87] Rai P, Oh S, Shyamkumar P, et al. Nano-bio-textile sensors with mo-bile wireless platform for wearable health monitoring of neurological and cardiovascular disorders[J]. Journal of The Electrochemical Soci-ety, 2014, 161(2):B3116-B3150.
[88] Mariani B, Jiménez M C, Vingerhoets F J, et al. On-shoe wearable sensors for gait and turning assessment of patients with parkinson's disease[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(1):155-158.
[89] Maetzler W, Domingos J, Srulijes K, et al. Quantitative wearable sen-sors for objective assessment of parkinson's disease[J]. Movement Dis-orders, 2013, 28(12):1628-1637.
[90] Cobelli C, Renard E, Kovatchev B P, et al. Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes[J]. Diabetes Care, 2012, 35(9):e65-e67.
[91] Cannon J G. Goodman and gilman's the pharmacological basis of thera-peutics. 11th edition[J]. Journal of Medicinal Chemistry, 2006, 49(3):1222.
[92] Ossig C, Antonini A, Buhmann C, et al. Wearable sensor-based objec-tive assessment of motor symptoms in Parkinson's disease[J]. Journal of Neural Transmission, 2015, 123(1):1-8.
[93] Klucken J, Barth J, Kugler P, et al. Unbiased and mobile gait analysis detects motor impairment in Parkinson's disease[J]. PLOS ONE, 2013, 8(2):e56956.
[94] Taylorpiliae R E, Mohler M J, Najafi B, et al. Objective fall risk detec-tion in stroke survivors using wearable sensor technology:A feasibility study[J]. Topics in Stroke Rehabilitation, 2015, 23(6):393-399.
[95] Bandodkar A J, Jia W, Wang X, et al. Tattoo-based noninvasive glu-cose monitoring:A proof-of-concept study[J]. Analytical Chemistry, 2015, 87(1):394-398.
[96] Ghasemzadeh H, Jafari R. Coordination analysis of human movements with body sensor networks:A signal processing model to evaluate base-ball swings[J]. IEEE Sensors Journal, 2011, 11(3):603-610.
[97] Rowlands D D, James D A, Lee J B. Visualization of wearable sensor data during swimming for performance analysis[J]. Sports Technology, 2013, 6(3):130-136.
[98] Brock H, Ohgi Y, Seo K. Development of an automated motion evalua-tion system from wearable sensor devices for ski jumping[J]. Procedia Engineering, 2016, 147:694-699.
[99] Chardonnens J, Favre J, Cuendet F, et al. Measurement of the dynam-ics in ski jumping using a wearable inertial sensor-based system[J]. Journal of Sports Sciences, 2014, 32(6):591-600.
[100] Chambers R, Gabbett T J, Cole M H, et al. The use of wearable mi-crosensors to quantify sport-specific movements[J]. Sports Medicine, 2015, 45(7):1065-1081.
[101] Driller M, Borges N, Plews D. Evaluating a new wearable lactate threshold sensor in recreational to highly trained cyclists[J]. Sports Engineering, 2016, 19(4):1-7.
[102] Zhou Y, Han H, Naw H P P, et al. Real-time colorimetric hydration sensor for sport activities[J]. Materials and Design, 2016, 90:1181-1185.
[103] Chaussabel D, Pulendran B. A vision and a prescription for big dataenabled medicine[J]. Nature Immunology, 2015, 16(5):435-439.
[104] Raj P, Raman A, Nagaraj D, et al. Big data analytics for healthcare[M]. Gewerbestrasse:Springer, 2015:391-424.
[105] Miller A. The future of health care could be elementary with watson[J]. Canadian Medical Association Journal, 2013, 185(9):E367-E368.
[106] Bae J, Song M K, Park Y J, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angewandte Chemie, 2011, 50(7):1683-1687.
[107] Fu Y, Cai X, Wu H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Advanced Materials, 2012, 24(42):5713-5718.
[108] Kim B J, Dong H K, Lee Y Y, et al. Highly efficient and bending du-rable perovskite solar cells:Toward a wearable power source[J]. Ener-gy and Environmental Science, 2014, 8(3):677-1048.
[109] Jung H S, Park N G. Perovskite solar cells:From materials to devices[J]. Small, 2015, 11(1):10-25.
[110] Weber J, Potje K K, Haase F, et al. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics[J]. Sensors and Actuators A(Physical), 2006, 132(1):325-330.
[111] Wang Z, Leonov V, Fiorini P, et al. Realization of a wearable minia-turized thermoelectric generator for human body applications[J]. Sen-sors and Actuators A Physical, 2009, 156(1):95-102.
[112] Cao X, Chiang W J, King Y C, et al. Electromagnetic energy harvest-ing circuit with feedforward and feedback DC-DC PWM boost con-verter for vibration power generator system[J]. IEEE Transactions on Power Electronics, 2007, 22(2):679-685.
[113] Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric pow-er generator array for vibration energy harvesting[J]. Microelectronics Journal, 2008, 39(5):802-806.
[114] Huang X, Liu Y, Kong G W, et al. Epidermal radio frequency elec-tronics for wireless power transfer[J]. Microsystems & Nanoengineer-ing, 2016, 2:16052.
[115] Ho J S, Yeh A J, Neofytou E, et al. Wireless power transfer to deeptissue microimplants[J]. Proceedings of the National Academy of Sci-ences, 2014, 111(22):7974-9.
[116] Cortez N G, Cohen I G, Kesselheim A S. FDA regulation of mobile health technologies[J]. New England Journal of Medicine, 2014, 371(4):372-379.
[117] McCartney M. How do we know whether medical apps work?[J]. Brit-ish Medical Journal, 2013, 346(6):f1974.
文章导航

/