物理海洋学是由海洋观测、理论分析和数值模拟共同推动的科学。得益于海洋观测和数值模拟能力的提高,2016年物理海洋学取得了一系列重要进展。简述了2016年大西洋经向翻转环流变异、西边界流与中尺度涡相互作用、温跃层湍流混合等重要研究成果,回顾了中国在热带西太平洋及邻近海域海洋观测网的建成、新型Argo浮标投入使用等海洋学热点事件。
Physical oceanography a science driven by the combination of ocean observation, theoretical analysis and numerical simulation. Owing to coordinative observations and advanced numerical simulations, some advances were made in physical oceanography in 2016 This paper reviews some key progresses in the fields of the Atlantic meridional overturning circulation, the interaction between western boundary currents and mesoscale eddies and the turbulent mixing of thermocline. This paper also briefs some hot events of oceanography including the successful construction of a mooring array in the tropical western Pacific by China and the pilot application of new-generation Argo floats.
[1] 中国科学院海洋研究所. 我国首个"西太平洋深海PIES观测阵"建设成功[EB/OL]. (2016-10-08)[2017-01-03]. http://www.qdio.cas.cn/xwzx/kydt/201610/t20161008_4672970.html.
[2] Climate and Weather. April 2016 was 12th consecutive warmest month on record, NOAA says[EB/OL]. (2016-05-18)[2017-01-03]. https://weather.com/news/climate/news/record-warmest-april-earth-2016#/!.
[3] University of Colorado at Boulder. Sea ice hit record lows in November[EB/OL]. (2016-12-16)[2017-01-03]. https://www.eurekalert.org/pub_releases/2016-12/uoca-sih120616.php.
[4] Scheuchl B, Mouginot J, Rignot E, et al. Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data[J]. Geophysical Research Letters, 2016, 43(16):8572-8579.
[5] Ma X, Jing Z, Chang P, et al. Western boundary currents regulated by interaction between ocean eddies and the atmosphere[J]. Nature, 2016, 535(7613):533-537.
[6] Smeed D A, McCarthy G, Cunningham S A, et al. Observed decline of the Atlantic meridional overturning circulation 2004-2012[J]. Ocean Science, 2014, 10(1):29-38.
[7] Yang Q, Dixon T H, Myers P G, et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation[J]. Nature communications, 2016(7):10525.
[8] Velicogna I, Sutterley T C, Van Den Broeke M R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data[J]. Geophysical Research Letters, 2014, 41(22):8130-8137.
[9] Brunnabend S E, Schröter J, Rietbroek R, et al. Regional sea level change in response to ice mass loss in Greenland, the West Antarctic and Alaska[J]. Journal of Geophysical Research:Oceans, 2015, 120(11):7316-7328.
[10] Luo H, Castelao R M, Rennermalm A K, et al. Oceanic transport of surface meltwater from the southern Greenland ice sheet[J]. Nature Geoscience, 2016(9):528-533.
[11] Jackson L C, Peterson K A, Roberts C D, et al. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening[J]. Nature Geo-science, 2016(9):518-523.
[12] Charney J G. Geostrophic turbulence[J]. Journal of the Atmospheric Sciences, 1971, 28(6):1087-1095.
[13] Byrne D, Münnich M, Frenger I, et al. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean[J]. Nature communications, 2016(7):11867.
[14] Small R J, Bacmeister J, Bailey D, et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model[J]. Journal of Advances in Modeling Earth Systems, 2014, 6(4):1065-1094.
[15] Cai W. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation[J]. Geophysical Research Letters, 2006, 33(3):L03712.
[16] Beal L M, Elipot S. Broadening not strengthening of the Agulhas Current since the early 1990s[J]. Nature, 2016, 540(7634):570-573.
[17] Liu C, Köhl A, Liu Z, et al. Deep-reaching thermocline mixing in the equatorial pacific cold tongue[J]. Nature communications, 2016(7):11576.
[18] Jing Z, Wu L, Ma X, et al. Overlooked role of mesoscale winds in powering ocean diapycnal mixing[J]. Scientific Reports, 2016(6):37180.
[19] 王凡, 汪嘉宁. 我国热带西太平洋科学观测网初步建成[J]. 中国科学院院刊, 2016, 31(2):258-263.
[20] 中国科学院海洋研究所. 科学家成功破解深海潜标数据实时传输世界难题[EB/OL]. (2017-01-03)[2017-01-03]. http://www.qdio.cas.cn/xwzx/tpxw/201701/t20170103_4730922.html.
[21] 青岛海洋科学与技术国家实验室. 海洋国家实验室南海潜标观测网实现南海全覆盖[EB/OL]. (2016-08-22)[2017-01-03]. http://www.qnlm.ac/page?a=14&b=2&c=37&d=1&p=detail.
[22] Zhang Z, Tian J, Qiu B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 2016(6):24349.
[23] Wang F, Song L, Li Y, et al. Semiannually alternating exchange of intermediate waters east of the Philippines[J]. Geophysical Research Letters, 2016, 43(13):7059-7065.
[24] 王凡, 胡敦欣, 穆穆, 等. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6):595-602.
[25] Riser S C, Freeland H J, Roemmich D, et al. Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change, 2016, 6(2):145-153.
[26] Tollefson J. Massive network of robotic ocean probes gets smart upgrade[J]. Nature, 2016, 531(7595):421-422.
[27] Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194):322-324.
[28] Xu L, Li P, Xie S P, et al. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific[J]. Nature Communications, 2016(7):10505.
[29] Ma X, Chang P, Saravanan R, et al. Distant influence of kuroshio eddies on north pacific weather patterns[J]. Scientific reports, 2015(5):17785.