专题论文

土壤中有机污染物生物有效性研究的意义及进展

  • 李冰 ,
  • 姚天琪 ,
  • 孙红文
展开
  • 南开大学环境科学与工程学院, 天津 300071
李冰,博士研究生,研究方向为土壤中持久性有机污染物的生物有效性,电子信箱:libingnankai@163.com

收稿日期: 2016-07-14

  修回日期: 2016-09-28

  网络出版日期: 2016-12-13

基金资助

国家重点基础发展研究计划(973计划)(2014CB441104)

Meaning and progresses of studies on bioavailability of organic contaminants in soil

  • LI Bing ,
  • YAO Tianqi ,
  • SUN Hongwen
Expand
  • College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

Received date: 2016-07-14

  Revised date: 2016-09-28

  Online published: 2016-12-13

摘要

污染物进入土壤后,与土壤成分发生相互作用,使其赋存状态发生变化,导致其移动性、生物有效性甚至是化学反应活性都出现不同程度的降低,使其环境与生态风险发生改变,并对其修复效率产生重要影响。污染物的移动性、生物有效性及化学反应活性既互相关联又不尽相同,其中生物有效性不但取决于污染物的赋存状态,还取决于生物吸收等过程,不同学科领域对生物有效性的理解存在较大差异。本文从污染物与土壤相互作用出发,综述了土壤中有机污染物生物有效性的研究意义及进展,介绍了污染物生物有效性涵义的认识历程,比较了生物有效性的不同评价方法,讨论了土壤环境因素、土壤生物、污染物性质及老化作用对土壤中有机污染物生物有效性的影响。

本文引用格式

李冰 , 姚天琪 , 孙红文 . 土壤中有机污染物生物有效性研究的意义及进展[J]. 科技导报, 2016 , 34(22) : 48 -55 . DOI: 10.3981/j.issn.1000-7857.2016.22.006

Abstract

Once an organic contaminant enters the soil, it will interact with the soil constituents, changing its existing state in the soil, which in turns will reduce the mobility, the bioavailability and the chemical reactivity to a certain extent and will have significant impacts on the risks of organic contaminants to the environment and the ecosystems as well as on the efficiencies of remediation technologies. The changes in the mobility, the bioavailability and the chemical reactivity are related with each other but have their own features. The bioavailability of the organic contaminants depends not only on the existing state of the contaminant in the soil but also on the absorption process of the organisms, and hence, there are many different understandings among different research fields about the meaning of bioavailability. In this paper, the recent research progresses on the bioavailability of the organic contaminants in the soil are reviewed from the view of the interactions between the soil and the organic contaminants. The meaning of the bioavailability is discussed, and different evaluation methods are compared. In addition, the impacts of the soil media factors, the soil organisms, the chemical properties and the aging on the bioavailability of the organic contaminants in the soil are highlighted.

参考文献

[1] Alexander M. Aging, bioavailability, and overestimation of risk from en-vironmental pollutants[J]. Environmental Science and Technology, 2000, 34(20):4259-4265.
[2] Semple K T, Doick K J, Jones K C, et al. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. En-vironmental Science and Technology, 2004, 38(12):228-231.
[3] 周启星, 罗义. 污染生态化学[M]. 北京:科学出版社, 2011. Zhou Qixing, Luo Yi. Pollution ecochemistry[M]. Beijing:Science Press, 2011.
[4] Rostami I, Juhasz A L. Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure as-sessment:A critical review[J]. Critical Reviews in Environmental Sci-ence and Technology, 2011, 41(7):623-656.
[5] Ehlers L J, Luthy R G. Peer reviewed:contaminant bioavailability in soil and sediment[J]. Environmental Science and Technology, 2003, 37(15):295-302.
[6] Chiou C T, Malcolm R L, Brinton T I, et al. Water solubility enhance-ment of some organic pollutants and pesticides by dissolved humic and fulvic acids[J]. Environmental Science and Technology, 1986, 20(5):502-508.
[7] Murphy E M, Zachara J M, Smith S C. Influence of mineral-bound hu-mic substances on the sorption of hydrophobic organic compounds[J]. Environmental Science and Technology, 1990, 24(10):1507-1516.
[8] Conte P, Zena A, Pilidis G, et al. Increased retention of polycyclic aro-matic hydrocarbons in soils induced by soil treatment with humic sub-stances[J]. Environmental Pollution, 2001, 112(1):27-31.
[9] Yao F X, Gui F Y, Fang W, et al. Aging activity of DDE in dissimilar rice soils in a greenhouse experiment[J]. Chemosphere, 2008, 71(6):1188-1195.
[10] Huang Q, Liu B R, Hosiana M, et al. Bioavailability of 2, 4, 6-Trini-trotoluene (TNT) to earthworms in three different types of soils in Chi-na[J]. Soil and Sediment Contamination, 2016, 25(1):38-49.
[11] Hatzinger P B, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability[J]. Environmental Science and Technology, 1995, 29(2):537-545.
[12] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206(4420):831-832.
[13] Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organic compounds between soil organic matter and water[J]. Environmental Science and Technology, 1983, 17(4):227-231.
[14] Ehlers G A, Loibner A P. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology:A review of geosorbent characterisation and (bio)availability prediction[J]. Environ-mental Pollution, 2006, 141(3):494-512.
[15] Watanabe N, Schwartz E, Scow K M, et al. Relating desorption and biodegradation of phenanthrene to SOM structure characterized by quantitative pyrolysis GC-MS[J]. Environmental Science and Technolo-gy, 2005, 39(16):6170-6181.
[16] Lu L, Zhu L. Effect of soil components on the surfactant-enhanced soil sorption of PAHs[J]. Journal of Soils and Sediments, 2012, 12(2):161-168.
[17] Liu Z, He Y, Xu J, et al. The ratio of clay content to total organic car-bon content is a useful parameter to predict adsorption of the herbi-cide butachlor in soils[J]. Environmental Pollution, 2008, 152(1):163-71.
[18] Huang Y, Liu Z, He Y, et al. Quantifying effects of primary parame-ters on adsorption-desorption of atrazine in soils[J]. Journal of Soils and Sediments, 2013, 13(1):82-93.
[19] Haderlein S B, Schwarzenbach R P. Adsorption of substituted nitroben-zenes and nitrophenols to mineral surfaces[J]. Environmental Science and Technology, 1993, 27(2):316-326.
[20] Weissmahr K W, Haderlein S B, Schwarzenbach R P. In situ spectro-scopic investigations of adsorption mechanisms of nitroaromatic com-pounds at clay minerals[J]. Environmental Science and Technology, 1996, 31(1):240-247.
[21] Huang W, Schlautman M A, Weber W J. A Distributed reactivity mod-el for sorption by soils and sediments. 5. The influence of near-sur-face characteristics in mineral domains[J]. Environmental Science Technology, 1996, 30(10):2993-3000.
[22] Ukrainczyk L, Rashid N. Irreversible sorption of nicosulfuron on clay minerals[J]. Journal of Agricultural and Food Chemistry, 1995, 43(4):855-857.
[23] Wen B, Li R J, Zhang S, et al. Immobilization of pentachlorophenol in soil using carbonaceous material amendments[J]. Environmental Pollu-tion, 2009, 157(3):968-974.
[24] Kookana R S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils:A review. Soil Res[J]. Australian Journal of Soil Research, 2010, 48(7):627-637.
[25] Sun X, Ghosh U. PCB bioavailability control in Lumbriculus variega-tus through different modes of activated carbon addition to sediments[J]. Environmental Science and Technology, 2007, 41(13):4774-4780.
[26] Denyes M J, Langlois V S, Rutter A, et al. The use of biochar to re-duce soil PCB bioavailability to cucurbita pepo and eisenia fetida[J]. Science of the Total Environment, 2012, 437(20):76-82.
[27] Towell M G, Browne L A, Paton G I, et al. Impact of carbon nanomate-rials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil[J]. Environmental Pollution, 2011, 159(3):706-715.
[28] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dis-solved organic matter in soils:A review[J]. Soil Science, 2000, 165(4):277-304.
[29] Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter[J]. Science of the Total Environment, 1998, 209(1):27-39.
[30] Williams C F, Agassi M, Letey J, et al. Facilitated transport of naprop-amide by dissolved organic matter through soil columns[J]. Soil Sci-ence Society of America Journal, 2000, 64(2):590-594.
[31] Zhou W J, Zhu L Z. Solubilization of pyrene by anionic-nonionic mixed surfactants[J]. Journal of Hazardous materials, 2004, 109(1-3):213-220.
[32] Geliner W J, Zhao X, Girand M, et al. Hydraulic conductivity of soil sorptive zones created by in situ injection of a cationic surfactant[J]. Journal of Environmental Engineering-Asce, 2006, 132(12):1659-1663.
[33] Hernandez-Soriano M C, Pena AMingorance M D. Retention of organo-phosphorous insecticides on a calcareous soil modified by organic amendments and a surfactant[J]. Science of the Total Environment, 2007, 378(1-2):109-113.
[34] Aryal M, Liakopoulou-Kyriakides M. Biodegradation and kinetics of phenanthrene and pyrene in the presence of nonionic surfactants by arthrobacter strain sphe3[J]. Water Air and Soil Pollution, 2013, 224(7):1426.
[35] Gao Y, Shen Q, Ling W, et al. Uptake of polycyclic aromatic hydrocar-bons by Trifolium pretense L. from water in the presence of a nonion-ic surfactant[J]. Chemosphere, 2008, 72(4):636-643.
[36] Iqbal J, Metosh-Dickey C, Portier R J. Temperature effects on biore-mediation of PAHs and PCP contaminated south Louisiana soils:A laboratory mesocosm study[J]. Journal of Soils and Sediments, 2007, 7(3):153-158.
[37] Kottler B D, Alexander M. Relationship of properties of polycyclic aro-matic hydrocarbons to sequestration in soil[J]. Environmental Pollu-tion, 2001, 113(3):293-298.
[38] Brusseau M L, Wood A L, Rao P S C. Influence of organic cosolvents on the sorption kinetics of hydrophobic organic chemicals[J]. Environ-mental Science and Technology, 2002, 25(5):903-910.
[39] Collins C, Fryer M, Grosso A. Plant uptake of non-ionic organic chem-icals[J]. Environmental Science and Technology, 2006, 40(1):45-52.
[40] Carter L J, Harris E, Williams M, et al. Fate and uptake of pharmaceu-ticals in soil-plant systems[J]. Journal of Agricultural and Food Chem-istry, 2014, 62(4):816-825.
[41] Li B, Yao T Q, Sun H W, et al. Diastereomer-and enantiomer-specif-ic accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different spe-cies of earthworms[J]. Science of the Total Environment, 2015, 542(Pt A):427-434.
[42] Peters R, Kelsey J W, White J C. Differences in p,p'-DDE bioaccumu-lation from compost and soil by the plants cucurbita pepo and cucurbi-ta maxima and the earthworms Eisenia fetida and Lumbricus terrestris[J]. Environmental Pollution, 2007, 148(2):539-545.
[43] Tang J, Carroquino M J, Robertson B K, et al. Combined effect of se-questration and bioremediation in reducing the bioavailability of poly-cyclic aromatic hydrocarbons in soil[J]. Environmental Science and Technology, 1998, 32(22):3586-3590.
[44] Liste H H, Alexander M. Butanol extraction to predict bioavailability of PAHs in soil[J]. Chemosphere, 2002, 46(7):1011-1017.
[45] Hickman Z A, Reid B J. Earthworm assisted bioremediation of organic contaminants[J]. Environment International, 2008, 34(7):1072-1081.
[46] Horn M A, Schramm A, Drake H L. The earthworm gut:An ideal habi-tat for ingested N2O-producing microorganisms[J]. Applied and Envi-ronmental Microbiology, 2003, 69(3):1662-1669.
[47] Drake H L, Horn M A. Earthworms as a transient heaven for terrestri-al denitrifying microbes:A review[J]. Engineering in Life Sciences, 2006, 6(3):261-265.
[48] Binet F, Kersante A, Munier-Lamy C, et al. Lumbricid macrofauna al-ter atrazine mineralization and sorption in a silt loam soil[J]. Soil Biol-ogy and Biochemistry, 2006, 38(6):1255-1263.
[49] Kersante A, Martin-Laurent F, Soulas G, et al. Interactions of earth-worms with atrazine-degrading bacteria in an agricultural soil[J]. FEMS Microbiology Ecology, 2006, 57(2):192-205.
[50] Pan X, Yang J, Mu S, et al. Fluorescent properties and bifenthrin bind-ing behavior of maize (Zea mays L.) seedling root exudates[J]. Europe-an Journal of Soil Biology, 2012, 50:106-108.
[51] Luo L, Zhang S, Shan X Q, et al. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils[J]. Chemosphere, 2006, 63(8):1273-1279.
[52] Lu X, Reible D D, Fleeger J W. Relative importance of ingested sedi-ment versus pore water as uptake routes for PAHs to the deposit-feed-ing oligochaete ilyodrilus templetoni[J]. Archives of Environmental Contamination and Toxicology, 2004, 47(2):207-214.
[53] Simonich S L, Hites R A. Organic pollutant accumulation in vegetation[J]. Environmental Science and Technology, 1995, 29(12):2905-14.
[54] Huang H, Zhang S, Christie P. Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites[J]. Environmental Pollu-tion, 2011, 159(1):238-243.
[55] Inoue J, Chamberlain K, Bromilow R H. Physicochemical factors af-fecting the uptake by roots and translocation to shoots of amine bases in barley[J]. Pesticide Science, 1998, 54(1):8-21.
[56] Trapp S. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds[J]. Pest Management Sci-ence, 2000, 56(9):767-778.
[57] Zhang Y, Luo X J, Mo L, et al. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China[J]. Chemosphere, 2015, 137(25-32.
[58] Malchi T, Maor Y, Tadmor G, et al. Irrigation of root vegetables with treated wastewater:evaluating uptake of pharmaceuticals and the asso-ciated human health risks[J]. Environmental Science and Technology, 2014, 48(16):9325-9333.
[59] Xiaoyang X, Hongwen S, Simpson M J. Concentration-and time-de-pendent sorption and desorption behavior of phenanthrene to geosor-bents with varying organic matter composition[J]. Chemosphere, 2010, 79(8):772-778.
[60] Steinberg S M, Pignatello J J, Sawhney B L. Persistence of 1,2-dibro-moethane in soils:entrapment in intraparticle micropores[J]. Environ-mental Science and Technology, 1987, 21(12):1201-1208.
[61] Kelsey J W, Alexander M. Declining bioavailability and inappropriate estimation of risk of persistent compounds[J]. Environmental Toxicolo-gy and Chemistry, 1997, 16(3):582-585.
[62] Tang J X, Carroquino M J, Robertson B K, et al. Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in sod[J]. Environmental Science and Technology, 1998, 32(22):3586-3590.
[63] Chung N H, Alexander M. Differences in sequestration and bioavail-ability of organic compounds aged in dissimilar soils[J]. Environmen-tal Science and Technology, 1998, 32(7):855-860.
[64] Saint-Denis M, Narbonne J F, Arnaud C, et al. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artifi-cial soil:Effects of benzo(a)pyrene[J]. Soil Biology and Biochemistry, 1999, 31(13):1837-1846.
[65] van der Heijden S A, Hermens J L M, Sinnige T L, et al. Determining High-quality critical body residues for multiple species and chemi-cals by applying improved experimental design and data interpretation concepts[J]. Environmental Science and Technology, 2015, 49(3):1879-1887.
[66] Gomez-Eyles J L, Collins C D, Hodson M E. Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioas-says and chemical methods to predict bioavailability[J]. Environmental Pollution, 2010, 158(1):278-284.
[67] Doick K J, Clasper P J, Urmann K, et al. Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil[J]. Environmental Pollution, 2006, 144(1):345-354.
[68] Rhodes A H, McAllister L ESemple K T. Linking desorption kinetics to phenanthrene biodegradation in soil[J]. Environmental Pollution, 2010, 158(5):1348-1353.
[69] Gouliarmou V, Mayer P. Sorptive bioaccessibility extraction (SBE) of soils:Combining a mobilization medium with an absorption sink[J]. Environmental Science and Technology, 2012, 46(19):10682-10689.
[70] Xu Y, Spurlock F, Wang Z, et al. Comparison of five methods for mea-suring sediment toxicity of hydrophobic cantaminants[J]. Environmen-tal Science and Technology, 2007, 41(24):8394-8399.
[71] Brand E, Lijzen J, Peijnenburg W, et al. Possibilities of implementa-tion of bioavailability methods for organic contaminants in the Dutch Soil Quality Assessment Framework[J]. Journal of Hazardous materi-als, 2013, 261:833-839.
[72] You J, Harwood A D, Li H, et al. Chemical techniques for assessing bioavailability of sediment-associated contaminants:SPME versus Tenax extraction[J]. Journal of Environmental Monitoring, 2011, 13(4):792-800.
[73] Laak T L, Busser F J M, Hermens J L M. Poly(dimethylsiloxane) as passive sampler material for hydrophobic chemicals:Effect of chemi-cal properties and sampler characteristics on partitioning and equili-bration times[J]. Analytical Chemistry, 2008, 80(10):3859-3866.
[74] 徐晓阳, 孙红文, 张志远. 半透膜微萃取方法的建立及其在测定土壤间隙水中憎水性有机污染物的应用[J]. 农业环境科学学报, 2010, 29(4):801-805. Xu Xiaoyang, Sun Hongwen, Zhang Zhiyuan. Semi-premeable mem-brane based micro-extraction techinique and its application in the de-termination of hydrophobic organic contaminants in soil pore-water[J]. Journal of Agro-Environment Science, 2010, 29(4):801-805.
文章导航

/