[1] Fujishima A, Honda K. Electrochemical photolysisof water at a semiconductor electrode[J]. Nature. 1972, 37(1):238-245.
[2] 刘国光,丁雪军,张学治,等. 光催化氧化技术的研究现状及发展趋势[J]. 环境污染治理技术与设备. 2003, 4(8):65-69. Liu Guoguang, Ding Xuejun, Zhang Xuezhi. The study situation and progress of photocatalytic oxidation technology[J]. Techniques and Equipment for Environmental Pollution Control. 2003,4(8):65-69.
[3] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination & Toxicology. 1976, 16(6):697-701.
[4] Steven N F, Allen J B. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. 1977, 81(15):1484-1488.
[5] Gole J L, Stout J D, Burda C, et al. Highly efficient formation of visible light tunable TiO2-x Nx photocatalysts and their transformation at the nanoscale[J]. The Journal of Physical Chemistry B. 2004, 108(4):1230-1240.
[6] 陈水辉, 彭峰, 王红娟. 具有可见光活性的光催化剂研究进展[J]. 现代化工, 2004(7):24-28. Chen Shuihui, Peng Feng, Wang Hongjuan. Progress in research on visible-light photocatalysis[J]. Modern Chemical Industry, 2004(7):24-28.
[7] 周武艺,曹庆云,唐绍裘. 提高纳米二氧化钛可见光光催化活性研究的进展[J]. 硅酸盐学报, 2006(7):861-867. Zhou Wuyi, Cao Qingyun, Tang Shaoqiu. Progress in improving visible light photocatalytic activity of nano-titanium dioxide[J]. Journal of the Chinese Ceramic Society, 2006(7):861-867.
[8] 程萍,顾明元,金燕苹. TiO2光催化剂可见光化研究进展[J]. 化学进展. 2005(1):8-14. Cheng Ping, Gu Mingyuan, Jin Yanping. Recent progress in titania photocatalyst operating under visible light[J]. Progress in Chemisty, 2005(1):8-14.
[9] 郭琼,施亦东. TiO2可见光催化剂的研究进展及其应用[J]. 四川化工, 2008(2):34-36. Guo Qiong, Shi Yidong. The visible-light irradiation of TiO2 photocatalyst[J]. Sichuan Chemical Industry, 2008(2):34-36.
[10] Yang Y, Wen J, Wei J, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination[J]. ACS applied materials & interfaces, 2013, 5(13):6201-6207.
[11] Singh S, Mahalingam H, Singh P K. Polymer-supported titanium dioxide photocatalysts for environmental remediation:A review[J]. Applied Catalysis A:General, 2013, 462:178-195.
[12] Lin L, Wang H, Luo H, et al. Enhanced photocatalysis using sideglowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 307:88-98.
[13] Bouhadoun S, Guillard C, Dapozze F E D E, et al. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis:Application in photocatalysis[J]. Applied Catalysis B:Environmental, 2015, 174:367-375.
[14] Li X, Liu P, Mao Y, et al. Preparation of homogeneous nitrogendoped mesoporous TiO2 spheres with enhanced visible-light photocatalysis[J]. Applied Catalysis B:Environmental, 2015, 164:352-359.
[15] Kong L, Wang C, Zheng H, et al. Defect-induced yellow color in Nb-Doped TiO2 and its impact on visible-light photocatalysis[J]. The Journal of Physical Chemistry C, 2015, 119(29):16623-16632.
[16] Chowdhury I H, Ghosh S, Naskar M K. Aqueous-based synthesis of mesoporous TiO2 and Ag-TiO2 nanopowders for efficient photodegradation of methylene blue[J]. Ceramics International, 2016, 42(2):2488-2496.
[17] Kaur R, Pal B. Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au-TiO2 photocatalysis[J]. Journal of Molecular Catalysis A:Chemical, 2012, 355:39-43.
[18] Wang B, Yang Z, An H, et al. Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light[J]. Applied Surface Science, 2015, 324:817-824.
[19] 陶玉贵,郑洁,朱龙宝,等. 磷酸盐调控纳米TiO2微结构及其表面羟基密度[J]. 化工进展, 2015(5):1401-1405. Tao Yugui, Zheng Jie, zhu Longbao. Phosphate regulate the microstructure and surface hydroxyl density of nano-titanium dioxide[J]. Chemical Industry and Engineering Progress, 2015(5):1401-1405.
[20] 马国强,郭倩倩,韩小金,等. 硫酸盐化对TiO2催化剂克劳斯活性的影响[J]. 环境工程学报, 2014(11):4842-4847. Ma Guoqiang, Guo Qianqian, Han Xiaojin. Influence of sulfation on Claus activity of TiO2 catalyst[J]. Chinese Journal of Environmental Engineering, 2014(11):4842-4847.
[21] Khan H, Berk D. Effect of a chelating agent on the physicochemical properties of TiO2:characterization and photocatalytic activity[J]. Catalysis Letters, 2014, 144(5):890-904.
[22] Deng X, Yue Y, Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations[J]. Applied Catalysis B:Environmental, 2002, 39(2):135-147.
[23] 曹沛森, 许璞, 王玉宝, 等. 纳米TiO2光催化剂的改性及应用研究进展[J]. 微纳电子技术, 2008(3):145-152. Cao Peilin, Xu Pu, Wang Yubao. Research progress on modification and application of nano-TiO2 photocatalyst[J]. Nanomaterial & Structure, 2008(3):145-152.
[24] Wang X, Kitao O, Hosono E, et al. TiO2-and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, 210(2):145-152.
[25] Lin Z, Liu P, Yan J, et al. Matching energy levels between TiO2 and α-Fe2O3 in a core——shell nanoparticle for visible-light photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(28):14853-14863.
[26] Cheng X, Jiang J, Jin C, et al. Cauliflower-like α-Fe2O3 microstructures:toluene——water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis[J]. Chemical Engineering Journal, 2014, 236:139-148.
[27] Wang Q, Wang D, Pan R, et al. Composite semiconductor quantum dots CdSe/CdS Co-sensitized TiO2 nanorod array solar cells[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2012, 27(5):876-880.
[28] Somasundaram S, Tacconi N, Chenthamarakshan C R, et al. Photoelectrochemical behavior of composite metal oxide semiconductor films with a WO3 matrix and occluded Degussa P25 TiO2 particles[J]. Journal of Electroanalytical Chemistry, 2005, 577(1):167-177.
[29] Yang R, Lu X, Zhang H, et al. Glycol-assisted construction of threedimensionally ordered macroporous ZnO-Cu2O-TiO2 with enhanced photocatalytic properties[J]. Applied Surface Science, 2016, 362:237-243.
[30] Wang W, Bu F, Jiang J. Porous TiO2 coated α-Fe2O3 ginger-like nanostructures with enhanced electrochemical properties[J]. Materials Letters, 2015, 139:89-92.
[31] Li X, Teng W, Zhao Q, et al. Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays[J]. Journal of Nanoparticle Research, 2011, 13(12):6813-6820.
[32] 黄泱,李顺兴,傅碧玉. 亚甲基蓝表面修饰纳米TiO2降解造纸废水动力学[J]. 环境工程学报, 2012(8):2544-2550. Huang Yang, Li Shunxing, Fu Biyu. Degradation kinetics of wastewater from papermaking on nanosized titanium dioxide surface modified with Methylene Blue[J]. Chinese Journal of Environmental Engineering, 2012(8):2544-2550.
[33] Kim W, Tachikawa T, Majima T, et al. Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3:enhanced activity for H2 production and dechlorination of CCl4[J]. The Journal of Physical Chemistry C, 2009, 113(24):10603-10609.
[34] Dieckmann M S, Gray K A. A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries[J]. Water Research, 1996, 30(5):1169-1183.
[35] Li X, Leng W. Regenerated dye-sensitized photocatalytic oxidation of arsenite over nanostructured TiO2 films under visible light in normal aqueous solutions:an insight into the mechanism by simultaneous (photo) electrochemical measurements[J]. The Journal of Physical Chemistry C, 2013, 117(2):750-762.
[36] 付文,王丽,黄军左. 可见光诱导TiO2光催化及其机理研究进展[J]. 材料导报, 2011, 25(18):54-58. Fu Wen, Wang Li, Huang Junzuo. Progress in TiO2 visible light inducing photocatalysis and its photocatalytic mechanism[J]. Materials Review, 2011, 25(18):54-58.
[37] Kong L, Wang C, Zheng H, et al. Defect-induced yellow color in Nb-Doped TiO2 and its impact on visible-light photocatalysis[J]. The Journal of Physical Chemistry C, 2015, 119(29):16623-16632.
[38] Xu S, Li S, Wei Y, et al. Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101(1):237-249.
[39] 杨传玺,王炜亮,董文平,等. 新型聚2-氨基苯磺酸改性TiO2纳米颗粒的制备及光催化性能[J]. 复合材料学报, 2015(36). Yang Chaunxi, Wang Weiliang, Dong Wenping. Synthesis and photocatalytic avtivity of new poly-2-aminobenzene sulfonic acid modifying TiO2 nano particles[J]. Acta Materiae Compositae Sinica, 2015(36).
[40] 傅深娜,吴明珠,刘克建,等. 纳米TiO2光催化降解环境中有机污染物研究进展[J]. 化工新型材料, 2014(11):232-234. Fu Shenna, Wu Mingzhu, Liu Kejian. Research progress on nano-TiO2 photocatalytic degradation of organic waste in the environment[J]. New Chemical Materials, 2014(11):232-234.
[41] Hamzezadeh-Nakhjavani S, Tavakoli O, Akhlaghi S P, et al. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation[J]. Environmental Science and Pollution Research, 2015, 22(23):18859-18873.
[42] Mohamed M M, Osman G, Khairou K S. Fabrication of Ag nanoparticles modified TiO2-CNT heterostructures for enhanced visible light photocatalytic degradation of organic pollutants and bacteria[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):1847-1859.
[43] Chandra M R, Rao T S, Sreedhar B. Recyclable Sn-TiO2/polythiophene nanohybrid material for degradation of organic pollutants under visible-light irradiation[J]. Chinese Journal of Catalysis, 2015, 36(10):1668-1677.
[44] Sood S, Umar A, Mehta S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds[J]. Journal of colloid and interface science, 2015, 450:213-223.
[45] 林龙利,刘国光,吕文英. TiO2光催化同步去除水体中重金属和有机物研究进展[J]. 科技导报, 2011(23):74-79. Lin Longli, Liu Guoguang, Lv Wenying. Treatment of heavy metals and organic contaminants by titanium dioxide photocatalysis[J]. Science & Technology Review, 2011(23):74-79.
[46] Wen Y, Liu S, Zhang Q, et al. Partially conjugated polyvinyl chloridemodified TiO2 nanoparticles for efficient visible-light-driven photocatalytic reduction of aqueous Cr (VI)[J]. Materials Letters, 2016, 163:262-265.
[47] Deng L, Liu H, Gao X, et al. SnS2/TiO2 nanocomposites with enhanced visible light-driven photoreduction of aqueous Cr (VI)[J]. Ceramics International, 2016, 42(3):3808-3815.
[48] Zhang X, Song L, Zeng X, et al. Effects of electron donors on the TiO2 photocatalytic reduction of heavy metal ions under visible light[M]. Advances in Intelligent Systems, Springer, 2012, 327-333.
[49] Lei X F, Xue X X, Yang H. Preparation and characterization of Agdoped TiO2 nanomaterials and their photocatalytic reduction of Cr (VI) under visible light[J]. Applied Surface Science, 2014, 321:396-403.
[50] Lv Y, Li W, Li J, et al. In situ formation of ZnO scattering sites within a TiO2 nanoparticles film for improved dye-sensitized solar cells performance[J]. Electrochimica Acta, 2015, 174:438-445.
[51] Shalan A E, Elseman A M, Rasly M, et al. Concordantly fabricated heterojunction ZnO-TiO2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells[J]. RSC Advances, 2015, 5(125):103095-103104.
[52] Mane R S, Pathan H M, Lokhande C D, et al. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells[J]. Solar Energy, 2006, 80(2):185-190.
[53] Yong S, Nikolay T, Ahn B T, et al. One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2013, 547:113-117.
[54] Prabhu N, Agilan S, Muthukumarasamy N, et al. Enhanced photovoltaic performance of WO3 nanoparticles added dye sensitized solar cells[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(12):5288-5295.
[55] Hara K, Zhao Z, Cui Y, et al. Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells[J]. Langmuir, 2011, 27(20):12730-12736.
[56] Wang Y, Li X, Li D, et al. Controllable synthesis of hierarchical SnO2 microspheres for dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 280:476-482.
[57] Bouras K, Schmerber G, Rinnert H E, et al. Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices[J]. Solar Energy Materials and Solar Cells, 2016, 145:134-141.
[58] Unni G E, Deepak T G, Nair A S. Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells[J]. Materials Science in Semiconductor Processing, 2016, 41:370-377.
[59] 黄娟茹,谭欣,于涛,等. 染料敏化太阳能电池光阳极TiO2薄膜的研究进展[J]. 材料导报, 2011(13):134-141. Huang Juanru, Tan Xin, Yu Tao. Progress in photoanode TiO2 of dyesensitized solar cells[J]. Materials Review, 2011(13):134-141.
[60] Hwang S H, Shin D H, Yun J, et al. SiO2/TiO2 hollow nanoparticles decorated with Ag nanoparticles:enhanced visible light absorption and improved light scattering in dye-sensitized solar cells[J]. Chemistry-A European Journal, 2014, 20(15):4439-4446.
[61] Liang L, Yulin Y, Mi Z, et al. Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence[J]. Journal of Solid State Chemistry, 2013, 198:459-465.
[62] Prabakar K, Son M, Ludeman D, et al. Visible light enhanced TiO2 thin film bilayer dye sensitized solar cells[J]. Thin Solid Films, 2010, 519(2):894-899.
[63] Zhang W, Wang S, Li J, et al. Photocatalytic hydrogen production from methanol aqueous solution under visible-light using Cu/S-TiO2 prepared by electroless plating method[J]. Catalysis Communications, 2015, 59:189-194.
[64] Tiwari A, Mondal I, Pal U. Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO2 photocatalyst in neutral water[J]. RSC Advances, 2015, 5(40):31415-31421.
[65] Wang Y, Yu J, Xiao W, et al. Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visiblelight hydrogen production[J]. Journal of Materials Chemistry A, 2014, 2(11):3847-3855.
[66] 李洪刚,李巧玲,万郁楠,等. 纳米银负载TiO2纤维的制备及其杀菌性能[J]. 化工新型材料, 2014(2):177-182. Li Honggang, Li Qiaoling, Wan Yunan. Preparation and antibaoterial propertioes of nanoAg-doped TiO2 fiber[J]. New Chemical Materials, 2014(2):177-182.
[67] He R L, Wei Y, Cao W B. Sterilization of E. coli by Fe-doped TiO2 modified photocatalytic paint under visible light irradiation[J]. Trans Tech Publ, 20081493-1496.
[68] Chang C Y, Hsu S K, Chang C J, et al. The effect of visible light-activated TiO2 thin film on nosocomial pathogens[J]. Trans Tech Publ, 2010268-271.