专题论文

引力波探测:引力波天文学的新时代

  • 郭宗宽 ,
  • 蔡荣根 ,
  • 张元仲
展开
  • 中国科学院理论物理研究所, 北京 100190
郭宗宽,研究员,研究方向为引力理论与宇宙学,电子信箱:guozk@itp.ac.cn

收稿日期: 2015-02-19

  网络出版日期: 2016-02-26

Gravitational wave detections: A new age of gravitational wave astronomy

  • GUO Zongkuan ,
  • CAI Ronggen ,
  • ZHANG Yuanzhong
Expand
  • Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2015-02-19

  Online published: 2016-02-26

摘要

美国LIGO 于2016 年2 月11 日宣布首次探测到了引力波,引起全世界范围的广大反响。本文解答从什么是引力波、引力波是如何产生的、人类为什么坚持不懈地探测引力波、如何探测引力波,介绍国内外引力波探测的现状,并对引力波探测的未来进行展望。

本文引用格式

郭宗宽 , 蔡荣根 , 张元仲 . 引力波探测:引力波天文学的新时代[J]. 科技导报, 2016 , 34(3) : 30 -33 . DOI: 10.3981/j.issn.1000-7857.2016.03.002

Abstract

On February 11, 2016 the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States announced the first direct detection of gravitational waves. This discovery attracted public attention. In this paper, we try to answer the following questions: What are gravitational waves? How are gravitational waves produced? Why and how do scientists detect gravitational waves? Moreover, we introduce the current status and prospects of gravitational wave detections.

参考文献

[1] Abbott B P, etalThe LIGO Scientific Collaboration, Virgo Collaboration. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letter, 2016, 116(6). Doi: 10.1103/PhysRev-Lett.116.016102.
[2] Hulse R A, Taylor J H. Discovery of a pulsar in a binary system[J]. Neutron stars, black holes, and binary X-ray sources, 1975, 48: 433.
[3] Jaranowski P, Królak A. Gravitational-wave data analysis. Formalism and sample applications: the Gaussian case[J]. arXiv preprint arXiv: 0711.1115, 2007.
[4] Sesana A, Vecchio A. Gravitational waves and pulsar timing: stochastic background, individual sources and parameter estimation[J]. Classical and Quantum Gravity, 2010, 27(8): 084016.
[5] Takahashi R, TAMA collaboration. Status of TAMA300[J]. Classical and Quantum Gravity, 2004, 21(5): S403.
[6] Willke B, Aufmuth P, Aulbert C, et al. The GEO 600 gravitational wave detector[J]. Classical and Quantum Gravity, 2002, 19(7): 1377.
[7] Acernese F, Amico P, Al-Shourbagy M, et al. Status of VIRGO[J]. Clas-sical and Quantum Gravity, 2005, 22(18): S869.
[8] Abramovici A, Althouse W E, Drever R W P, et al. LIGO: The laser in-terferometer gravitational-wave observatory[J]. Science, 1992, 256 (5055): 325-333.
[9] Harry G M, LIGO Scientific Collaboration. Advanced LIGO: the next generation of gravitational wave detectors[J]. Classical and Quantum Gravity, 2010, 27(8): 084006.
[10] Accadia T. Plans for the upgrade of the gravitational wave detector vir-go: Advanced virgo[C]//Twelfth Marcel Grossmann Meeting on General Relativity. 2012, 1: 1738.
[11] Kuroda K, LCGT collaboration. Status of LCGT[J]. Classical and Quan-tum Gravity, 2010, 27(8): 084004.
[12] Punturo M, Abernathy M, Acernese F, et al. The third generation of gravitational wave observatories and their science reach[J]. Classical and Quantum Gravity, 2010, 27(8): 084007.
[13] Amaro-Seoane P, Aoudia S, Babak S, et al. eLISA: Astrophysics and cosmology in the millihertz regime[J]. arXiv preprint arXiv:1201.3621, 2012.
[14] Manchester R N. The Parkes Pulsar Timing Array[J]. arXiv preprint arXiv:0710.5026, 2007.
[15] Janssen G H, Stappers B W, Kramer M, et al. European pulsar timing array[C]//40 Years of Pulsars: Millisecond Pulsars, Magnetars and More. AIP Publishing, 2008, 983(1): 633-635.
[16] Jenet F, Finn L S, Lazio J, et al. The north american nanohertz obser-vatory for gravitational waves[J]. arXiv preprint arXiv:0909.1058, 2009.
文章导航

/