综述文章

长杆弹侵彻半无限靶板流体动力学理论

  • 高光发
展开
  • 1. 南京理工大学机械工程学院, 南京 210094;
    2. 安徽理工大学煤矿安全高效开采省部共建教育部重点实验室, 淮南 232001;
    3. 中国科学技术大学近代力学系, 合肥 230027
高光发,教授,研究方向为爆炸与冲击动力学、波动力学,电子信箱:gfgao@ustc.edu.cn

收稿日期: 2015-03-25

  修回日期: 2015-11-01

  网络出版日期: 2016-02-04

基金资助

国家自然科学基金项目(11202206, 11472008);教育部博士点专项基金项目(20123415120001);中国博士后科学基金项目(2011M501057);安徽省自然科学基金项目(1208085QE86);安徽省高校省级优秀青年人才基金重点项目(2012SQRL049ZD);安徽理工大学博士基金项目(2011YB007);中央高校基本科研业务费专项资金项目(30915118801)

Hydro-dynamics theory for long-rod projectile penetrating semi-infinite target: reviews and studies

  • GAO Guangfa
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education; Anhui University of Science and Technology, Huainan 232001, China;
    3. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Received date: 2015-03-25

  Revised date: 2015-11-01

  Online published: 2016-02-04

摘要

针对长杆弹垂直侵彻半无限金属靶板,基于侵彻流体动力学理论,研究结果和理论分析成果,从最简单的Bernoulli 方程出发,逐步推导、分析和讨论长杆弹垂直侵彻半无限金属靶板的相关理论。根据实验观察结果结合理论分析、数值仿真讨论了HTP模型的内涵、适用范围和局限性,给出了HTP 模型的基本假设;考虑靶板强度的影响,进而分析AR 模型的相关应用与内涵,并在此基础上讨论了弹体强度的影响,提出了改进的AR 模型,该模型是AR 模型向AT 模型过渡的一个模型,并讨论了该模型的适用性;结合数值研究和现有实验结果,分析了侵彻过程中弹体的速度特征,最后,分析了AT 模型的推导过程、内涵以及相关应用。HTP 模型是建立在9 个基本假设的前提下成立的,本文主要针对后两个假设,逐步释放其限制,从而逐步接近实际情况。

本文引用格式

高光发 . 长杆弹侵彻半无限靶板流体动力学理论[J]. 科技导报, 2016 , 34(2) : 287 -298 . DOI: 10.3981/j.issn.1000-7857.2016.2.049

Abstract

Taking the behavior of long-rod projectile vertically penetrating semi-infinite metal target as the subject, this paper deduces and reviews a series of modified penetration theories based on the hydro-dynamic theory of penetration (HTP). A large quantity of published experimental data and numerical simulation results are employed for discussion of the theoretical analysis results. The assumptions and premises for the establishment of HTP model are presented. Based on these experimental data, the numerical results and theoretical analysis results, the connotation, scope of application and limitation of HTP model are discussed. The nine application preconditions for the HTP model are proposed. If the strength of the target is taken into account, the Allen-Rogers model is available. On the basis of analysis of the Allen-Rogers model and considering the strength of the projectile, this paper developed a modified Allen-Rogers model, provided solutions for it and made comparative analysis. In view of the deceleration of the projectile in the process of penetration, the numerical simulation of the penetration was conducted. The derivation and evolution of the theoretical model from the modified Allen-Rogers model to Alekseevskii-Tate model are discussed.

参考文献

[1] Taylor G I. The use of flat-ended projectiles for determining dynamic yield stress, I. theoretical consideration[J]. Proceedings of the Royal So-ciety of London Series A, Mathematical and Physical Sciences, 1948, 194(1038): 288-299.
[2] Hawkyard J B. A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations[J]. Interna-tional Journal of Mechanical Sciences, 1969, 11(3): 313-333.
[3] Tate A. A possible explanation for the hydrodynamic transition in high speed impact[J]. International Journal of Mechanical Sciences, 1977, 19: 121-123.
[4] Birkhoff G, Mcdougall D P, Pugh E M, et al. Explosives with lined cavi-ties[J]. Journal of Applied Physics, 1948, 19(6): 563-582.
[5] Pack D C, Evans W M. Penetration by High-Velocity ('Munroe') Jets: I [J]. Proceedings of the Physical Society, Section B, 1951, 64(4): 298-302.
[6] Pack D C, Evans W M. Penetration by High-Velocity ('Munroe') Jets: II [J]. Proceedings of the Physical Society, Section B, 1951, 64(4): 303-310.
[7] 高光发, 李永池, 沈玲燕, 等. 入射速度对长杆弹垂直侵彻行为的影响规律[J]. 高压物理学报, 2012, 26(4): 449-454. Gao Guangfa, Li Yongchi, Shen Yanling, et al. Effect of impact velocity on the penetration behavior for long-rod penetrator vertically penetrat-ing semi-infinite target[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 449-454.
[8] Tate A. A theory for the deceleration of long rods after impact[J]. Jour-nal of the Mechanics and Physics of Solids, 1967, 15: 387-399.
[9] Anderson Jr C E, Orphal D L, Franzen R R, et al. On the hydrodynam-ic approximation for long-rod penetration[J]. International Journal of Im-pact Engineering, 1999, 22: 23-43.
[10] Orphal D L, Franzen R R. Penetration of confined silicon carbine tar-gets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s[J]. International Journal of Impact Engineering, 1997, 19(1): 1-13.
[11] Orphal D L, Franzen R R, Charters A C, et al. Penetration of confined boron carbine targets by tungsten long rods at impact velocitis from 1.5 to 5.0 km/s[J]. International Journal of Impact Engineering, 1997, 19(1): 15-29.
[12] Orphal D L, Franzen R R, Piekutowski A J, et al, Penetration of con-fined aluminum nitride targets by tungsten long rods at 1.5-4.5 km/s[J]. International Journal of Impact Engineering, 1996, 18(4): 355-368.
[13] Behner T, Orphal D L, Hohler V, et al, Hypervelocity penetration of gold rods into SiC-N for impact velocitied from 2.0 to 6.2 km/s[J]. In-ternational Journal of Impact Engineering, 2006, 33: 68-79.
[14] Subramanian R, Bless S J. Penetration of semi-infinite AD955 alumi-na targets by tungsten long rod penetrators from 1.5 to 3.5 km/s[J]. In-ternational Journal of Impact Engineering, 1995, 17: 807-816.
[15] Subramanian R, Bless S J, Cazamias J, et al. Reverse impact experi-ments against tungsten rods and results for aluminum penetration be-tween 1.5 and 4.2 km/s[J]. International Journal of Impact Engineer-ing, 1995, 17: 817-824.
[16] 高光发, 李永池, 段士伟, 等. 侵彻准稳定过程中冲击速度与侵彻速度的关系[J]. 兵器材料科学与工程, 2011, 34(1): 13-16. Gao Guangfa, Li Yongchi, Duan Shiwei, et al. Dependence of penetra-tion velocity on impact velocity at quasi-steady stage[J]. Ordnance Ma-terial Science and Engineering, 2011, 34(1): 13-16.
[17] Orphal D L, Anderson Jr C E. The dependence of penetration velocity on impact velocity[J]. International Journal of Impact Engineering, 2006, 33: 546-554.
[18] Anderson Jr C E, Littlefield D L, Walker J D. Long-rod penetration, target resistance, and hypervelocity impact[J]. International Journal of Impact Engineering, 1993, 14: 1-12.
[19] Sorensen B R, Kimsey K D, Silsby G F, et al. High velocity penetra-tion of steel targets[J]. International Journal of Impact Engineering, 1991, 11(1): 107-119.
[20] Whiffin A C. The use of flat-ended projectiles for determining dynam-ic yield stress. II. tests on various metallic materials[J]. Proceedings of the Royal Society, 1948, 194(1038): 300-322.
[21] Gooch W A, Burkins M S, Walters W P, et al. Target strength effect on penetration by shaped charge jets[J]. International Journal of Im-pact Engineering, 2001, 26: 243-248.
[22] Allen W A, Rogers J W. Penetration of a rod into a semi-infinite tar-get[J]. Journal of the Franklin Institute, 1961, 272(4): 275-284.
[23] Hencky H. Über einige statisch bestimmte Falle des Gleichgewichts in plastischen Korpen[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1923, 3: 241-251.
[24] Ishlinsky A J. The axi-symmetrial problem in plasticity and Brinell test[J]. Journal of Applied Mathematics and Mechanics, 1944, 8(3): 201-224.
[25] Anderson Jr C E, Hohler V, Walker J D, et al. The influence of projec-tile hardness on ballistic performance[J]. International Journal of Im-pact Engineering, 1999, 22: 619-632.
[26] Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests[J]. The Proceedings of the Physical Society, 1945, 57(3): 147-159.
[27] Eichelberger R J. Experimental test of the theory of penetration by me-tallic jets[J]. Journal of Applied Physics, 1956, 27: 63-68.
[28] Anderson Jr C E, Hohler V, Walker J D, et al. Time-resolved penetra-tion of long rods into steel targets[J]. International Journal of Impact Engineering, 1995, 16(1): 1-18.
[29] 高光发, 李永池, 赵凯, 等. 长杆弹侵彻过程中弹靶材料本构参数对侵彻计算的影响规律及其优化[J]. 兵器材料科学与工程, 2016, 39 (2): (已录用). Gao Guangfa, Li Yongchi, Zhao Kai, et al. Influence Rules and Mecha-nisms of Material Constitutive Parameters on the Penetration Depth and Optimization for them[J]. Ordnance Material Science and Engineer-ing, 2016, 39(2): in press.
[30] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983.
[31] Johnson G R, Cook W H. Fracture characteristics of three metals sub-jected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[32] Teng X, Wierzbicki T. Evaluation of six fracture models in high veloci-ty perforation[J]. Engineering Fracture Mechanics, 2006, 73: 1653-1678.
[33] Wilson, Foster, Jones and Gillis. In 'A penetration mechanics database' [R]//Anderson C E, et al. SwRI Report 3593/001, AD-A246351. Southwest Research Institute, San Antonio, TX, 1989: A194-A195.
[34] Alekseevskii V P. Penetration of a rod into a target at high velocity[J]. Fizika Goreniya i Vzryva (Combustion, Explosion, and Shock Waves), 1966, 2(2): 99-106.
[35] Tate A. Further results in the theory of long rod penetration[J]. Journal of the Mechanics and Physics of Solids, 1969, 17: 141-150.
文章导航

/