芦山“4·20”地震之后,滑坡、崩塌、泥石流等次生地质灾害频发,新增地质灾害点365 处,严重影响当地经济建设与灾后重建工作。在分析地质灾害孕灾环境条件的基础上,选取地层岩性、断裂带、坡度、相对高程、年平均降雨量、地震动峰值加速度、土地利用类型等7 个因子作为评价指标,建立基于灾害熵的地质灾害危险性评价方法,并将该方法应用于芦山县地质灾害危险性评价。结果表明,芦山县49.89%的区域处于中度和高度危险区,其中高危险区占总面积的29.99%,这些高危险区位于正河、玉溪河、灵关河流域,受地形、人类活动、地震影响,地质灾害破坏性极大,在后期建设与防灾减灾中应当给予高度关注。
After the "4·20" earthquake in Lushan County, secondary geological disasters such as landslides, collapses and debris flows occurred frequently. There are 365 new geological hazard spots which seriously impact local economic construction and post-disaster reconstruction. This paper selects lithology, fault zone, slope, relative elevation, annual rainfall, peak ground acceleration, and the type of land use based on geological disasters environmental conditions to build up a geological disasters hazard evaluation methodology of entropy, which has been applied to Lushan's geological disasters risk assessment. The results show that 49.89% of Lushan's area belong to a medium and high dangerous region, among which 29.99% are in high dangerous region situated in Zheng River, Yuxi River and Lingguan River drainage basin. Impacted by terrain, human activities and earthquake, the geological disasters always damage heavily, so we should pay more attention to it during subsequent construction and disaster prevention and mitigation.
[1] 崔鹏, 陈晓清, 张建强, 等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J]. 山地学报, 2013, 31(3): 257-265. Cui Peng, Chen Xiaoqing, Zhang Jianqiang, et al. Activities and tendency mountain hazards induced by the Ms7.0 Lushan earthquake, April 20, 2013[J]. Journal of Mountiain Science, 2013, 31(3): 257-265.
[2] 黄润秋, 李为乐. ”5·12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. Huang Runqiu, Li Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27 (12): 2585-2592.
[3] 韩金良, 吴树仁, 何淑军, 等. ”5·12”汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J]. 地学前缘, 2009, 16(3): 306-326. Han Jinliang, Wu Shuren, He Shujun, et al. Basal characteristics and formation mechanisms of geological hazards triggered by the May 12, 2008 Wenchuan earthquake with a moment magnitude of 8.0[J]. Earth Science Frontiers. 2009, 16(3): 306-326.
[4] 李为乐, 黄润秋, 许强, 等.“4·20”芦山地震次生地质灾害预测评价 [J]. 成都理工大学学报: 自然科学版, 2013, 40(3): 264-274. Li Weile, Huang Runqiu, Xu Qiang, et al. Rapid prediction of coseismic landslides triggered by Lushan earthquake, Sichuan, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2013, 40(3): 264-274.
[5] 许冲. 2013年芦山Ms7.0级地震滑坡易发性快速评价方法[J]. 科技导报, 2013, 31(28/29): 15-23. Xu Chong. Quick landslide susceptibly evaluation and its validation for the 2013 Ms7.0 Lushan earthquake[J]. Science & Technology Review, 2013, 31(28/29): 15-23.
[6] 王庆安, 张翔, 毛竹. 汶川地震生态环境破坏严重区地形高程和起伏度分布特点[J] 科技导报, 2009, 27(16): 53-59. Wang Qingan, Zhang Xiang, Mao Zhu. Distribution of elevation and relief amplitude in the eco-environment seriously damaged areas of Wenchuan Earthquake[J]. Science & Technology Review, 2009, 27(16): 53-59.
[7] 邹强, 崔鹏, 杨伟. G318川藏公路段泥石流危险性评价[J]. 山地学报, 2013, 31(3): 342-348. Zou Qiang, Cui Peng, Yang Wei. Hazard assessment of debris flows along G318 Sichuan-Tibet highway[J]. Journal of Mountiain Science, 2013, 31(3): 342-348.
[8] Chien C C, Tseng C Y, Dong J J. New entropy-based method for variables selection and its application to the debris-flow hazard assessment[J]. Engineering Geology, 2007, 94(1): 19-26.
[9] Joyner W B, Boore D M. Peak horizontal acceleration and velocity from strong motion recods including records from the 1979 imperial valley, California earthquake[J]. Bulletin ofthe Seismologicl Society of America, 1981, 71(6): 2011-2038.
[10] Campbell K W. Near-source attenuation of peak horizontal acceleration [J]. Bulletin of the Seismologicl Society of America, 1981, 71(6): 2039-2070.
[11] Fukushima Y, Tannaka T. A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan[J]. Bulletin ofthe Seismologicl Society of America, 1990, 80(4): 757-783.
[12] 陈顒, 朱宏任. 地震灾害定量化研究[J]. 国际地震动态, 1991, 5: 5-9. Chen Yong, Zhu Hongren. Research on quantification of earthquake disastrs[J]. Recent Developments in World Seismology, 1991, 5: 5-9.
[13] 陈运泰, 杨智娴, 张勇, 等. 从汶川地震到芦山地震[J]. 中国科学:地球科学, 2013, 43: 1064-1072. Chen Yuntai, Yang Zhixian, Zhang Yong, et al. From 2008 Wenchuan earthquake to 2013 Lushan earthquake[J]. Science China: Earth Sciences, 2013, 43: 1064-1072.
[14] Saaty T L. The analytic hierarchy process[M]. New York: McGraw-Hill, 1980.
[15] Zou Qiang. Hazard assessment of highways affected by debris flows[J]. Applied Mechanics and Materials, 2014, 501-504: 2455-2462.
[16] 高克昌, 崔鹏, 赵纯勇, 等. 基于地理信息系统和信息量模型的滑坡危险性评价-以重庆万州为例[J]. 岩石力学与工程学, 2006, 25(5): 991-996. Gao Kechang, Cui Peng, Zhao Chunyong, et al. Landslide hazard evaluation of Wanzhou based on GIS information value method in the three gorges reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 991-996.
[17] 张春山, 吴满路, 张业成. 地质灾害风险评价方法及展望[J]. 自然灾害学报, 2003, 12(1): 96-102. Zhang Chunshan, Wu Manlu, Zhang Yecheng. Method and prospect of geological disaster risk assessment[J]. Journal of Natural Disasters, 2003, 12(1): 96-102.
[18] 朱阿兴, 裴韬, 乔建平, 等. 基于专家知识的滑坡危险性模糊评估方法[J]. 地理科学进展, 2006, 25(4): 1-12. Zhu Axing, Pei Tao, Qiao Jianping, et al. A landslide susceptibility mapping approach uing expert knowledge and fuzzy logic under GIS [J]. Progress in Geography, 2006, 25(4): 1-12.
[19] 刘希林. 泥石流危险性评价[M]. 北京: 科学出版社, 1995. Liu Xilin. Debris flow hazard assessment[M]. Beijing: Science Press, 1995.
[20] 罗元华. 论泥石流灾害风险评估方法[J]. 中国矿业, 2000, 9(6): 70-72. Luo Yuanhua. Assessment of danger degree of mudrock flow[J]. China Mining Magazine, 2000, 9(6): 70-72.
[21] 段永侯. 中国地质灾害[M]. 北京: 中国建筑工业出版社, 1993. Duan Yonghou. Geological calamity in China[M]. Beinjing: China Construction Industry Press, 1993.