综述文章

煤田火区发展演化的多场耦合作用过程

  • 马砺 ,
  • 刘庚 ,
  • 肖旸 ,
  • 鲁军辉 ,
  • 何勇军
展开
  • 1. 西安科技大学西部煤矿安全教育部工程研究中心, 西安 710054;
    2. 西安科技大学能源学院, 西安科技大学西部矿井开采及灾害防治教育部重点实验室, 西安 710054;
    3. 西安科技大学能源学院, 西安 710054
马砺,副教授,研究方向为矿山重大灾害及其防治、安全技术及工程,电子信箱:malifuture@126.com

收稿日期: 2015-04-13

  修回日期: 2015-07-23

  网络出版日期: 2016-02-04

基金资助

国家自然科学基金重点项目(51134019);国家自然科学基金青年项目(51204135,51204136)

Research on multi-field coupling process of coalfield fire area development and evolution

  • MA Li ,
  • LIU Geng ,
  • XIAO Yang ,
  • LU Junhui ,
  • HE Yongjun
Expand
  • 1. Engineering Research Center of West-China Coal Mine Safety, Ministry of Education; Xi'an University of Science and Technology, Xi'an 710054, China;
    2. Key Laboratory of Western Mine Exploration and Hazard Prevention, Ministry of Education; College of Energy Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
    3. College of Energy Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

Received date: 2015-04-13

  Revised date: 2015-07-23

  Online published: 2016-02-04

摘要

针对煤田火区发展演化多场耦合作用过程,分析了热-流-固耦合机理及不同时期煤体燃烧状态及产物。揭示了煤田火区发展演化是由煤氧复合化学反应而放热升温,产生热应力及烧空区致使上覆岩层失稳塌陷,形成煤岩体裂隙网络产生裂隙场,从而为氧气及燃烧产物对流循环提供通道,进一步促使火区向深部扩展延伸的灾变机理。因此,煤田火区温度场、裂隙应力场、渗流场及化学场之间的耦合作用是加速煤体燃烧的非线性动力循环过程。

本文引用格式

马砺 , 刘庚 , 肖旸 , 鲁军辉 , 何勇军 . 煤田火区发展演化的多场耦合作用过程[J]. 科技导报, 2016 , 34(2) : 190 -194 . DOI: 10.3981/j.issn.1000-7857.2016.2.031

Abstract

Aiming at the multi-field coupling process of coalfield fire area development and evolution, this paper analyzes the thermalhydrological-mechanical coupling mechanism and states together with products of coal combustion in different periods. This paper also reveals the disaster mechanism of development and evolution of coalfield fire area as a series of activities: Heat releasing originated from coal oxygen complex chemical reactions and overlying strata collapse made by burn out area, followed by the fracture network formed by cracks in coal and rock mass, which provide circulation channel for oxygen and combustion products, ultimately the expansion of the fire disaster mechanism extending to the deep. Thus, the coupling of the coal fire thermal hydrological mechanical and chemical field is an accelerating nonlinear dynamic cycle process of coal combustion. The results provide a scientific basis for the prevention and control of coalfield fire.

参考文献

[1] 邓军, 文虎, 张辛亥, 等. 煤田火灾防治理论与技术[M]. 徐州: 中国矿业大学出版社, 2014. Deng Jun, Wen Hu, Zhang Xinhai, et al. Theory and technology of coalfield fire prevention and control[M]. China University of Mining and Technology Press, 2014.
[2] Taron J, lsworth D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(5): 855-864.
[3] Wessling S, Kuenzer C, Kessels W, et al. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires [J]. International Journal of Coal Geology, 2008, 74(3-4): 175-184.
[4] Wessling S, Kessels W, Schmidt M, et al. Investigating dynamic underground coal fires by means of numerical simulation[J]. Geophysical Journal International, 2008, 172(1): 439-454.
[5] 蔡强, 牛丛丛, 刘曰武, 等. 煤层中双重孔隙介质渗流理论的应用[J]. 科技导报, 2012, 30(24): 17-22. Cai Qiang, Niu Congcong, Liu Yuewu, et al. Theory of dual-porosity media in coal bed methane and its application[J]. Science & Technology Review, 2012, 30(24): 17-22.
[6] Stracher G B, Taylor T P. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1-2): 7-17.
[7] 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010. Zhao Yangsheng. Multiple field coupling action of the porous medium and its engineering response[M]. Bejing: Science Press, 2010.
[8] Drebenstedt C, Gusat D, Wang C. Numerical modelling of surface impact of coal fires on coal fire areas[C]//Latest Developments in Coal Fire Rrsearch-Bridging the Science, Economics, and Politics of a Global Dister. Proceeding of Second International Conference on Coal Fire Research. Berlin, Germany: TU Bergakademie Freiberg Press, 2010: 244-248.
[9] Elick J M. The effect of abundant precipitation on coal fire subsidence and its implications in Centralia, PA[J]. International Journal of Coal Geology, 2013, 105: 110-119.
[10] Heffern E L, Coates D A. Geologic history of natural clal-bed fires, powder river basin, USA[J]. International Journal of Coal Geology, 2004, 59(1-2): 25-27.
[11] Rosem A, Guan H, Veld H. Simulation of spontaneous combustion to study the causes of coal result in the Ru jigou Basin[J]. Fuel, 2001, 80 (1): 7-16.
[12] 曾强. 新疆煤田火灾烟气流动与传热特性的研究[J]. 煤炭学报, 2009, 34(6): 792-796. Zeng Qiang. Study on the regularity of gas/smoke flow and the characteristics of heat-transfer with spontaneous combustion in Xinjiang coalfield[J]. Journal of China Coal Society, 2009, 34(6): 792-796.
[13] 曾强, 常心坦. 新疆煤田火区火风压模式研究及其应用[J]. 煤炭学报, 2007, 32(9): 955-958. Zeng Qiang, Chang Xintan. Study on the model of fire-heating airflow and its application to Xinjiang coal-field fires[J]. Journal of China Coal Society, 2007, 32(9): 955-958.
[14] 李唐山, 周心权, 谷红军. 煤田露头自燃火风压数值的理论分析[J]. 煤炭学报, 2005, 30(6): 737-740. Li Tangshan, Zhou Xinquan, Gu Hongjun. Theoretical analysis of numerical value of the spontaneous combustion fire-heating air pressure for coalfield outcrop[J]. Journal of China Coal Society, 2005, 30(6): 737-740.
[15] 王海燕, 周心权, 张红军, 等. 煤田露头自燃的渗流-热动力耦合模型及应用[J]. 北京科技大学学报, 2010, 32(2): 152-157. Wang Haiyan, Zhou Xinquan, Zhang Hongjun, et al. Seepage-thermal dynamical coupling model for spontaneous combustion of coalfield outcrop and its application[J]. Journal of University of Science and Technology Beijing, 2010, 32(2): 152-157.
[16] 张春阳, 曹平, 靳瑾, 等. 金川矿区深部巷道围岩流固耦合稳定性数值模拟[J]. 科技导报, 2013, 31(33): 31-36. Zhang Chunyang, Cao Ping, Jin Jin, et al. Numerical simulation of fluid-structure interaction stability for Jinchuan Deep Roadway[J]. Science & Technology Review, 2013, 31(33): 31-36.
[17] Nowak T, Kunz H, Dixon D, et al. Coupled 3-D thermo-hydromechanical analysis of geo technological in situ tests[J]. International Journal of Rock Mechanics & Mining Sciences, 2011(48): 1-15.
[18] Shaik A R, Rahman S S, Tran N H, et al. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 2011, 31: 1600-1606.
[19] Zhu W C, Wei C H, Liu J, et al. A model of coal gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011, 86(2-3): 213-221.
[20] Zhang Hongbin, Liu Jishan, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45 (8): 1226-1236.
[21] Xia Tongqiang, Zhou Fubao, Liu Jishan, et al. A fully coupled hydrothermo-mechanical model for the spontaneous combustion of underground coal seams[J]. Fuel, 2014(125): 106-115.
[22] 周创兵, 陈益峰, 姜清辉, 等. 论岩体多场广义耦合及其工程应用[J]. 岩石力学与工程学报, 2008, 27(7): 1329-1340. Zhou Chuangbing, Chen Yifeng, Jiang Qinghui, et al. On generalized multi-field coupling for fractured rock masses and it's applications to rock engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1329-1340.
[23] 赵阳升, 杨栋, 冯增朝, 等. 多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J]. 岩石力学与工程学报, 2008, 27(7): 1321-1328. Zhao Yangsheng, Yang Dong, Feng Zengchao, et al. Multi-field coupling theory of porous media and it's applications to resources and energy engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1321-1328.
[24] Taron Joshua, lsworth D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46 (5): 855-864.
[25] 王永岩, 王艳春. 温度-应力-化学三场耦合作用下深部软岩巷道蠕变规律数值模拟[J]. 煤炭学报, 2012, 37(S2): 275-279. Wang Yongyan, Wang Yanchun. Numerical simulation of creep law in deep soft rock tunnel under thermal-mechanical-chemical coupling effect[J]. Journal of China Coal Society, 2012, 37(S2): 275-279.
[26] 康志勤, 吕兆兴, 杨栋, 等. 油页岩原位注蒸汽开发的固-流-热-化学耦合数学模型研究[J]. 西安石油大学学报: 自然科学版, 2008, 23 (4): 30-34. Kang Zhiqin, lü Zhaoxing, Yang Dong, et al. The solid-fluid-thermalchemistry coupling mathematical model for oil shale in-situ steam injecting development[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2008, 23(4): 30-34.
[27] 何学秋, 王恩元, 魏建平, 等. 煤岩电磁辐射的力-电耦合模型[J]. 科技导报, 2007, 25(17): 46-51. He Xueqiu, Wang Enyuan, Wei Jianping, et al. The mechanicalelectrical coupling model for EME of coal or rock[J]. Science & Technology Review, 2007, 25(17): 46-51.
[28] Yang Dong, Zhao Yangsheng, Hu Yaoqing. The constitute law of gas seepage in rock fractures undergoing three-dimensional stress[J]. Transport in Porous Media, 2006, 63(3): 463-472.
[29] Xia Tongqiang, Zhou Fubao, Liu Jishan, et al. A fully coupled coal deformation and compositional flow model for the control of the premining coal seam gas extraction[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 138-148.
[30] Ide T S, Pollard D, Franklin M, et al. Fissure formation and subsurface subsidence in a coalbed fire[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(1): 81-93.
[31] Liu Quanrun, Hu Haoyun, Zhou Qiang, et al. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel, 2004, 83 (6): 713-725.
[32] Cai Junmeng, He Fang, Yi Weiming, et al. A new formula approximating the Arrhenius integral to Perform the noniso thermal kinetics[J]. Chemical Engineering Joumal, 2006, 124(1-3): 15-18.
文章导航

/