[1] 邓军, 文虎, 张辛亥, 等. 煤田火灾防治理论与技术[M]. 徐州: 中国矿业大学出版社, 2014. Deng Jun, Wen Hu, Zhang Xinhai, et al. Theory and technology of coalfield fire prevention and control[M]. China University of Mining and Technology Press, 2014.
[2] Taron J, lsworth D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(5): 855-864.
[3] Wessling S, Kuenzer C, Kessels W, et al. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires [J]. International Journal of Coal Geology, 2008, 74(3-4): 175-184.
[4] Wessling S, Kessels W, Schmidt M, et al. Investigating dynamic underground coal fires by means of numerical simulation[J]. Geophysical Journal International, 2008, 172(1): 439-454.
[5] 蔡强, 牛丛丛, 刘曰武, 等. 煤层中双重孔隙介质渗流理论的应用[J]. 科技导报, 2012, 30(24): 17-22. Cai Qiang, Niu Congcong, Liu Yuewu, et al. Theory of dual-porosity media in coal bed methane and its application[J]. Science & Technology Review, 2012, 30(24): 17-22.
[6] Stracher G B, Taylor T P. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1-2): 7-17.
[7] 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010. Zhao Yangsheng. Multiple field coupling action of the porous medium and its engineering response[M]. Bejing: Science Press, 2010.
[8] Drebenstedt C, Gusat D, Wang C. Numerical modelling of surface impact of coal fires on coal fire areas[C]//Latest Developments in Coal Fire Rrsearch-Bridging the Science, Economics, and Politics of a Global Dister. Proceeding of Second International Conference on Coal Fire Research. Berlin, Germany: TU Bergakademie Freiberg Press, 2010: 244-248.
[9] Elick J M. The effect of abundant precipitation on coal fire subsidence and its implications in Centralia, PA[J]. International Journal of Coal Geology, 2013, 105: 110-119.
[10] Heffern E L, Coates D A. Geologic history of natural clal-bed fires, powder river basin, USA[J]. International Journal of Coal Geology, 2004, 59(1-2): 25-27.
[11] Rosem A, Guan H, Veld H. Simulation of spontaneous combustion to study the causes of coal result in the Ru jigou Basin[J]. Fuel, 2001, 80 (1): 7-16.
[12] 曾强. 新疆煤田火灾烟气流动与传热特性的研究[J]. 煤炭学报, 2009, 34(6): 792-796. Zeng Qiang. Study on the regularity of gas/smoke flow and the characteristics of heat-transfer with spontaneous combustion in Xinjiang coalfield[J]. Journal of China Coal Society, 2009, 34(6): 792-796.
[13] 曾强, 常心坦. 新疆煤田火区火风压模式研究及其应用[J]. 煤炭学报, 2007, 32(9): 955-958. Zeng Qiang, Chang Xintan. Study on the model of fire-heating airflow and its application to Xinjiang coal-field fires[J]. Journal of China Coal Society, 2007, 32(9): 955-958.
[14] 李唐山, 周心权, 谷红军. 煤田露头自燃火风压数值的理论分析[J]. 煤炭学报, 2005, 30(6): 737-740. Li Tangshan, Zhou Xinquan, Gu Hongjun. Theoretical analysis of numerical value of the spontaneous combustion fire-heating air pressure for coalfield outcrop[J]. Journal of China Coal Society, 2005, 30(6): 737-740.
[15] 王海燕, 周心权, 张红军, 等. 煤田露头自燃的渗流-热动力耦合模型及应用[J]. 北京科技大学学报, 2010, 32(2): 152-157. Wang Haiyan, Zhou Xinquan, Zhang Hongjun, et al. Seepage-thermal dynamical coupling model for spontaneous combustion of coalfield outcrop and its application[J]. Journal of University of Science and Technology Beijing, 2010, 32(2): 152-157.
[16] 张春阳, 曹平, 靳瑾, 等. 金川矿区深部巷道围岩流固耦合稳定性数值模拟[J]. 科技导报, 2013, 31(33): 31-36. Zhang Chunyang, Cao Ping, Jin Jin, et al. Numerical simulation of fluid-structure interaction stability for Jinchuan Deep Roadway[J]. Science & Technology Review, 2013, 31(33): 31-36.
[17] Nowak T, Kunz H, Dixon D, et al. Coupled 3-D thermo-hydromechanical analysis of geo technological in situ tests[J]. International Journal of Rock Mechanics & Mining Sciences, 2011(48): 1-15.
[18] Shaik A R, Rahman S S, Tran N H, et al. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 2011, 31: 1600-1606.
[19] Zhu W C, Wei C H, Liu J, et al. A model of coal gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011, 86(2-3): 213-221.
[20] Zhang Hongbin, Liu Jishan, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45 (8): 1226-1236.
[21] Xia Tongqiang, Zhou Fubao, Liu Jishan, et al. A fully coupled hydrothermo-mechanical model for the spontaneous combustion of underground coal seams[J]. Fuel, 2014(125): 106-115.
[22] 周创兵, 陈益峰, 姜清辉, 等. 论岩体多场广义耦合及其工程应用[J]. 岩石力学与工程学报, 2008, 27(7): 1329-1340. Zhou Chuangbing, Chen Yifeng, Jiang Qinghui, et al. On generalized multi-field coupling for fractured rock masses and it's applications to rock engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1329-1340.
[23] 赵阳升, 杨栋, 冯增朝, 等. 多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J]. 岩石力学与工程学报, 2008, 27(7): 1321-1328. Zhao Yangsheng, Yang Dong, Feng Zengchao, et al. Multi-field coupling theory of porous media and it's applications to resources and energy engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1321-1328.
[24] Taron Joshua, lsworth D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46 (5): 855-864.
[25] 王永岩, 王艳春. 温度-应力-化学三场耦合作用下深部软岩巷道蠕变规律数值模拟[J]. 煤炭学报, 2012, 37(S2): 275-279. Wang Yongyan, Wang Yanchun. Numerical simulation of creep law in deep soft rock tunnel under thermal-mechanical-chemical coupling effect[J]. Journal of China Coal Society, 2012, 37(S2): 275-279.
[26] 康志勤, 吕兆兴, 杨栋, 等. 油页岩原位注蒸汽开发的固-流-热-化学耦合数学模型研究[J]. 西安石油大学学报: 自然科学版, 2008, 23 (4): 30-34. Kang Zhiqin, lü Zhaoxing, Yang Dong, et al. The solid-fluid-thermalchemistry coupling mathematical model for oil shale in-situ steam injecting development[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2008, 23(4): 30-34.
[27] 何学秋, 王恩元, 魏建平, 等. 煤岩电磁辐射的力-电耦合模型[J]. 科技导报, 2007, 25(17): 46-51. He Xueqiu, Wang Enyuan, Wei Jianping, et al. The mechanicalelectrical coupling model for EME of coal or rock[J]. Science & Technology Review, 2007, 25(17): 46-51.
[28] Yang Dong, Zhao Yangsheng, Hu Yaoqing. The constitute law of gas seepage in rock fractures undergoing three-dimensional stress[J]. Transport in Porous Media, 2006, 63(3): 463-472.
[29] Xia Tongqiang, Zhou Fubao, Liu Jishan, et al. A fully coupled coal deformation and compositional flow model for the control of the premining coal seam gas extraction[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 138-148.
[30] Ide T S, Pollard D, Franklin M, et al. Fissure formation and subsurface subsidence in a coalbed fire[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(1): 81-93.
[31] Liu Quanrun, Hu Haoyun, Zhou Qiang, et al. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel, 2004, 83 (6): 713-725.
[32] Cai Junmeng, He Fang, Yi Weiming, et al. A new formula approximating the Arrhenius integral to Perform the noniso thermal kinetics[J]. Chemical Engineering Joumal, 2006, 124(1-3): 15-18.