选取大庆外围特/超低渗透储层岩心进行物理模拟实验,结合核磁共振,通过注水转注气、CO2混相驱、CO2非混相驱和周期注气4 种驱替方式,研究不同渗透率级别岩心的驱油效率和剩余油分布,以此对大庆现场注CO2先导实验区开发提供参考意见。结果表明,在相同条件下,常规注水开发的效果最差,但转注气后能有较大的提升;对于特低渗岩心,周期注气的驱油效率最高;对于超低渗岩心,注水转注气的效果高于其他3 种方式。剩余油分布研究表明,注水转注气、CO2混相驱和CO2非混相驱3 种方式动用的主要是大-中孔隙中的油,对于黏土微孔隙中的原油很难进行动用,但是通过周期注气过程中的停注时间,在毛管力和弹性能的作用下,微孔隙中的原油向中-大孔隙中流动,从而增加小孔隙中难动用的原油的动用程度。
The physical simulation of the core of Daqing peripheral extra/ultra-low permeability reservoirs is designed, combined with the nuclear magnetic resonance (NMR), in consideration of four kinds of gas injection modes, that is, water injection converting to gas injection, CO2 miscible flooding, CO2 immiscible gas injection and the cycle gas injection, to study the oil displacement efficiency and the residual oil distribution of different levels permeability cores, for the development of the pilot area of Daqing CO2 pilot test area. Results indicate that, under the same conditions, the effect of the conventional water injection is the worst, but after converting to the gas injection, a larger ascension may be achieved. For extra low permeability cores, the cycle gas injection displacement efficiency is the highest. For ultra-low permeability cores, the effect of the water transfer gas is higher than that of other three modes. The residual oil distribution shows that, for the water transfer gas, the CO2 miscible flooding and the immiscible CO2 flooding, with a main use of oil in the large-medium pore, the crude oil in clay micro pore is hard to drive, but during the time of the cycle gas injection process, under the action of capillary force and the elastic energy, the crude oil flows from the micro pore to the large-medium pore, thus increasing the utilization of crude oil in small pores.
[1] 李士伦, 张正卿, 冉新权. 注气提高石油采收率技术[M]. 成都: 四川科 学技术出版社, 2001. Li Shilun, Zhang Zhengqing, Ran Xinquan. Gas injectionenhanced oil recovery technology[M]. Chengdu: Sichuan Science and Technology Press, 2001.
[2] 孙焕泉. 胜利油区低渗透油藏提高采收率技术对策[J]. 油气地质与采 收率, 2002, 9(2): 10-13. Sun Huanquan. Countermeasures of EOR of low permeability reservoirs in Shengli Oilfield[J]. Oil & Gas Recovery Techinology, 2002, 9(2): 10-13.
[3] Koottungal L. Special Report 2010 worldwide EOR survey[J]. Oil & Gas Journal, 2010, 108(14): 41-53.
[4] 李士伦, 周守信, 杜建芬. 国内外注气提高石油采收率技术回顾与展 望[J]. 油气地质与采收率, 2002, 9(2): 1-5. Li Shilun, Zhou Shouxin, Du Jianfen. Review and prospect of domestic and foreign gas injection enhanced oil recovery technology[J]. Oil & Gas Recovery Techinology, 2002, 9(2): 1-5.
[5] 汪益宁, 吴晓东, 展转盈. 低渗透高含水油藏水气交替驱实验[J]. 油气 田地面工程, 2013, 32(11): 43-44. Wang Yining, Wu Xiaodong, Zhan Zhuanying. Experiment of water and gas alternating displacement in low permeability and high water cut reservoir[J]. Oil-Gasfield Surface Engineering, 2013, 32(11): 43-44.
[6] 刘淑霞. 特低渗透油藏CO2驱室内实验研究[J]. 西南石油大学学报: 自然科学版, 2011, 33(2): 133-136. Liu Shuxia. Experimental study on CO2 flooding in ultra- low permeability reservoir[J]. Journal of Southwest Petroleum Institute: Science & Technology Edition, 2011, 33(2): 133-136.
[7] 国家经济贸易委员会. SY/T 6573—2003 最低混相压力细管实验测定 法[S]. 北京: 石油工业出版社, 2003. Economy and Trade Commission. SY/T 6573—2003 Measurement method for minimum miscibility pressure by slim tube test[S]. Beijing: PetroIeum Industry Press, 2003.
[8] George R C, Xiao L Z. Prammer M G. NMR Logging principles & applications[M]. Houston: Gulf Company,1999.
[9] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学 出版社, 1998. Xiao Lizhi. NMR imaging logging principles and applications[M]. Beijing: Science Press, 1998.
[10] 王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方 法[J]. 西南石油大学学报: 自然科学版, 2010, 32(2): 69-72. Wang Xuewu, Yang Zhengming, Li Haibo, et al. Experiment Study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum Institute: Science & Technology Edition, 2010, 32(2): 69-72.
[11] 李艳, 范宜仁, 邓少贵, 等. 核磁共振岩心实验研究储层孔隙结构[J]. 勘探地球物理进展, 2008, 31(2): 129-132. Li Yan, Fan Yiren, Deng Shaogui, et al. Experimental study of pore structure with nuclear magneticresonance[J]. Progress in Exploration Geophysics, 2008, 31(2): 129-132.
[12] 刘卫, 肖忠祥, 杨思玉, 等. 利用核磁共振(NMR)测井资料评价储层 孔隙结构方法的对比研究[J]. 石油地球物理勘探, 2009, 44(6): 773- 778. Liu Wei, Xiao Zhongxiang, Yang Siyu, et al. Comparison researches of reservoir pore evaluted methods which used NMR logging date[J]. Oil Geophysical Prospecting, 2009, 44(6): 773-778.
[13] 苏俊磊, 孙建孟, 王涛, 等. 应用核磁工作测井资料评价储层孔隙结 构的改进方法[J]. 吉林大学学报: 地球科学版, 2011, 41(增1): 380- 386. Su Junlei, Sun Jianmeng, Wang Tao, et al. An improved method ofevaluating reservoir pore structure with nuclear magnetic log data[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(Suppl 1): 380-386.
[14] 李海波, 朱巨义, 郭和坤. 核磁共振T2 谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2): 273-280. Li Haibo, Zhu Juyi, Guo Hekun. Study on the distribution of pore radius of T2 spectrum of nuclear magnetic resonance[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 273-280.
[15] 李海波, 郭和坤, 刘强, 等. 致密油储层水驱油核磁共振实验研究[J]. 中南大学学报: 自然科学版, 2014, 45(12): 4370-4376. Li Haibo, Guo Hekun, Liu Qiang, et al. NMR experimental study of water displacing oil of tight oil reservoir[J]. Journal of Central South University (Science and Technology), 2014, 45(12): 4370-4376.
[16] 俞宏伟, 杨思玉, 李实, 等. 低渗透油藏CO2驱过程中含水率变化规 律[J]. 吉林大学学报: 地球科学版, 2011, 41(4): 1028-1032. Yu Hongwei, Yang Siyu, Li Shi, et al. Rules of water cut variation in low permeability oil reservoir CO2 flooding process[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(4): 1028-1032.
[17] 姜洪福, 雷友忠, 熊霄, 等. 大庆长垣外围特低渗透扶杨油层CO2非 混相驱油试验研究[J]. 现代地质, 2008, 22(4): 659-663. Jiang Hongfu, Lei Youzhong, Xiong Xiao, et al. An CO2 immiscible dispalcement exerimental study aiming at Fuyang extra- low pemeability layer at peripheral of Daqing placanticline[J]. Geoscience, 2008, 22(4): 659-663.