地壳中干热岩所蕴含的地热能量巨大,已成为世界各国重点研究开发的新能源。干热岩资源开发的增强型地热工程的场地试验研究投资大、周期长、风险大,在现场压裂和人工热储层建造示范工程前,实施干热岩水力压裂实验室研究很有必要。为此,吉林大学深部地热和干热岩研究团队建设了大尺寸高温高压下干热岩水力压裂实验室模拟系统,为现场压裂工艺设计和储层改造提供参数和技术支持。本文介绍模拟系统的实验设备、实验条件和初步的实验研究成果。
Hot dry rock (HDR), which contains abundant geothermal energy, is a new type of geothermal resources and has become the worldwide focus in new energy utilization and development. The field test of enhanced geothermal engineering for development of HDR resources is costly, risky, and time-consuming. Therefore, it is necessary to carry out laboratory test for investigating the property of HDR before field fracturing and construction of artificial geothermal reservoir. The most urgent and essential problem is the research on hydraulic fracturing and micro seismic monitoring technology in the process of utilizing HDR. To further explore this issue to provide parameters and technical support for field fracturing and reservoir stimulation, Jilin University established a HDR laboratory simulation system that can carry out hydraulic fracturing of large-sized samples under high temperature and pressure. This paper focuses on the testing instrument, testing conditions and research results of the simulation system.
[1] 康玲, 王时龙, 李川. 增强地热系统EGS的人工热储技术[J]. 机械设计 与制造, 2008(9): 141-143. Kang Ling, Wang Shilong, Li Chuan. Reservoir technology in EGS[J]. Machinery Design & Manufacture, 2008(9): 141-143.
[2] Brown D. The US hot dry rock program -20 years of experience in reservoir testing[C]. Proceedings of World Geothermal Congress, Florence, Italy, 18-31 May, 1995.
[3] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32): 42-45.
[4] Ahmed U, Abou-Sayed A S, Jones A H. Experimental evaluation of fracturing fluid interaction with tight reservoir rocks and propped fractures[C]. Society of Petroleum Engineers, Symposium on Low Permeability Gas Reservoirs, Denver, USA, May 20-22, 1979.
[5] Cha M, Yin X L, Kneafsey T. Cryogenic fracturing for reservoir stimulation-Laboratory studies[J]. Journal of Petroleum Science and Engineering, 2014, 124: 436-450.
[6] Kitano K, Hori Y, Kaieda H. Outline of the ogachi hdr project and character of the reservoirs[C]. Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan, May 28-June 10, 2000.
[7] Ishida T, Chen Q, Mizuta Y. Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring[J]. Pure and Applied Geophysics, 1997, 150: 627-646.
[8] Matsunag I, Kobayashi H, Sasaki S, et al. Studying hydraulic fracturing mechanism by laboratory experiments with acoustic emission monitoring[C]. American Rock Mechanics Association, The 34th U. S. Symposium on Rock Mechanics, Madison, USA, June 28-30, 1973.
[9] Ishida T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15: 283-295.
[10] Bohloli B, Pater C J de. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress[J]. Journal of Petroleum Science and Engineering. 2006, 53: 1-12.
[11] Hunt S P, Morelli C. Cooper Basin HDR hazard evaluation: predictive modeling of local stress changes due to HFR geothermal energy operations in South Australia[R/OL]. [2015-06-20] http://citeseerx.ist. psu.edu/viewdoc/download?doi=10.1.1.113.3593&rep=rep1&type=pdf.
[12] Sarmadivaleh M, Rasouli V. Test design and sample preparation procedure for experimental investigation of hydraulic fracturing interaction modes[J]. Rock Mechanics and Rock Engineering, 2015, 48 (1): 93-105.
[13] Stober I. Depth and pressure dependent permeability in the upper continental crust: Data from the Urach 3 geothermal borehole, southwest Germany[J]. Hydrogeology Journal Germany, 2011, 19(3), 685-699.
[14] Reinicke A, Rybacki E, Stanchits S. Hydraulic fracturing stimulation techniques and formation damage mechanisms -Implications from laboratory testing of tight sandstone–proppant systems[J]. Chemie der Erde-Geochemistry, 2010, 70(S3): 107-117.
[15] 黄炳香, 程庆迎, 刘长友, 等. 煤岩体水力致裂理论及其工艺技术框 架[J]. 采矿与安全工程学报, 2011, 28(2): 167-173. Huang Bingxiang, Cheng Qingying, Liu Changyou, et al. Hydraulic fracturing theory of coal rock mass and its technical framework[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 167-173.
[16] 黄炳香. 煤岩体水力致裂弱化的理论与应用研究[D]. 北京: 中国矿 业大学, 2009. Huang Bingxiang. Research on theroy and application of hydraulic fracture weakening for coal-rock mass[D]. Beijing: China University of Mining and Technology, 2009.
[17] Jia L C, Chen M, Sun L T. Experimental study on propagation of hydraulic fracture in volcanic rocks using industrial CT technology[J]. Petroleum Exploration and Development, 2013, 40(3): 405-408.
[18] 孔令珍. 中国地热能发展趋势[J]. 煤炭技术, 2006, 25(7): 107-108. Kong Lingzhen. Development trend of geothermal energy resource in china[J]. Coal Technology, 2006, 25(7): 107-108.
[19] 毛宏举, 马洪伟. 增强型地热发电技术及广东省应用前景分析[J]. 新 能源及工艺, 2010(5): 25-28. Mao Hongju, Ma Hongwei. Discussion on the techno logy of enhanced geothermal generation and its app lication prospect in Guangdong province[J]. Energy engineering, 2010(5): 25-28.
[20] 殷秀兰. 干热岩地热资源利用前景无限[N]. 中国矿业报, 2008-10-14. Yin Xiulan. Hot dry rock geothermal resources utilization prospect of unlimited[N]. China Mining News, 2008-10-14.