专题论文

干热岩研究现状与展望

  • 陆川 ,
  • 王贵玲
展开
  • 中国地质科学院水文地质环境地质研究所, 石家庄 050061
陆川,研究员,研究方向为裂隙水流和深部地热,电子信箱:luchuancn@163.com

收稿日期: 2015-06-03

  修回日期: 2015-07-31

  网络出版日期: 2015-10-16

基金资助

中国地质科学院水文地质环境地质研究所科研资助项目(SK201413);中国地质调查局地质调查项目(12120113077900)

Current status and prospect of hot dry rock research

  • LU Chuan ,
  • WANG Guiling
Expand
  • Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

Received date: 2015-06-03

  Revised date: 2015-07-31

  Online published: 2015-10-16

摘要

干热岩蕴藏着巨大的热能,是世界发达国家积极开发的重要资源之一。在干热岩技术基础上提出的增强型地热系统,已经历40 余年的研究,在理论研究和工程实践中取得了重要成果,积累了丰富经验。本文总结世界干热岩的研究发展历程、示范工程中失败和成功的经验,论述开发过程中关键科学技术的重要成就和不足之处,阐明今后的技术发展方向,对包括干热岩在内的高温地热资源开发利用提出了展望。

本文引用格式

陆川 , 王贵玲 . 干热岩研究现状与展望[J]. 科技导报, 2015 , 33(19) : 13 -21 . DOI: 10.3981/j.issn.1000-7857.2015.19.001

Abstract

Hot dry rock contains a huge amount of geothermal energy and is one of the most important resources being explored in developed countries. The enhanced geothermal system (EGS) has been developed on the basis of hot dry rock utilization. EGS related science and technologies have been developed for decades, which are abundant in theoretical research and engineering practice. This paper reviews the developing courses of several important EGS projects, summarizing their successes and lessons, and provides a comprehensive discussion of the key scientific and technical achievements and deficiency, including new progress in high temperature geothermal systems. Prospect of their future development is predicted.

参考文献

[1] Massachusetts Institute of Technology. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.
[2] Brown D. The US Hot Dry Rock program-20 years of experience in reservoir testing[C/OL]. [2015-03-31]. http://www.geothermal-energy. org/pdf/IGAstandard/WGC/1995/4-Brown.pdf.
[3] Brown D. 1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico[R]. NM, USA: Los Alamos National Lab, 1995.
[4] Geothermal Technologies Program. An evaluation of enhanced geothermal system technology[R]. Energy Efficiency and Renewable Energy, America, 2008: 1-37.
[5] Tester J W, AlbrightJ N, Hot Dry Rock energy extraction field test: 75 days of operation of a prototype reservoir at fenton hill, segment 2 of phase I[R]. Informal Rep. No. LA-7771-MS, Los Alamos Scientific Laboratory, Los Alamos, NM, 1979.
[6] Duchane D. Geothermal energy: encyclopedia of chemical technology[M]. New York: Wiley, 1993: 512-539.
[7] Batchelor A S. Brief summary of some geothermal related studies in the United Kingdom[C]//2nd NATO//CCMS Geothermal Conference. Los Alamos, USA, 1977: 22-24.
[8] Batchelor A S. The stimulation of a hot dry rock geothermal reservoir in the Cornubian granite, England[C]//8th Workshop on Geothermal Reservoir Engineering. California: Stanford University Press, 1982: 237-248.
[9] Batchelor A S, Baria R, Hearn K. Monitoring the effects of hydraulic stimulation by microseismic event location: A case study[C]//SPE Annual Technical Conference and Exhibition. San Francisco: Society of Petroleum Engineers, 1983.
[10] Batchelor A S. Reservoir behaviour in a stimulated hot dry rock system[C]//11th Workshop on Geothermal Reservoir Engineering. California: Stanford University, 1986.
[11] Hori Y, Kitano K, Kaieda H, et al. Present status of the Ogachi HDR Project, Japan, and future plans[J]. Geothermics, 1999, 28(4): 637-645.
[12] Schroeder R, Swenson D, Shinohara N, et al. Strategies for the Hijiori long term flow test[C]//Proceeding 23rd Workshop on Geothermal Reservoir Engineering. California: Stanford University, 1998.
[13] Tenma N, Yamaguchi T, Tezuka K, et al. A study of the pressure-flow response of the Hijiori reservoir at the Hijiori HDR test site[C/OL].[2015-03-31]. A study of the pressure-flow response of the Hijiori reservoir at the Hijiori HDR test site.
[14] Kiho K. Study on surface area estimation of the Ogachi HDR reservoir by geochemical method[C]. Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28-June 10, 2000.
[15] Shin K, Ito H, Oikawa Y. Stress state at the Ogachi site[C/OL]. [2015-03-31]. http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/ R0395.PDF.
[16] Kaieda H, Jones R, Moriya H, et al. Ogachi HDR reservoir evaluation by AE and geophysical methods[C/OL]. [2015-03-31]. http://www. geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0397.PDF.
[17] Moriya H, Niitsuma H, Baria R. Estimation of fine scale structures in Soultz HDR reservoir by using microseismicmultiplets[C/OL]. [2015-03-31]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495. 7329&rep=rep1&type=pdf.
[18] Baria R, Baumgärtner J, Gérard A, et al. European hot dry rock geothermal research programme 1996-1997[J]. European Commission Final Report (DGXII) EUR15925ER, 1999.
[19] Cuenot N, Dorbath L, Frogneux M, et al. Microseismic activity induced under circulation conditions at the EGS Project of Soultz-sous-Forêts (France)[C/OL]. [2015-03-31]. http://www.geothermal-energy.org/pdf/ IGAstandard/WGC/2010/3148.pdf.
[20] BRGM. Deep geothermal energy: The Soultz-sous-Forêts site has reached the sustainable production phase[EB/OL]. [2015-03-31]. http: //www.brgm.eu/projects/deep-geothermal-energy-the-soultz-sousforets-site-has-reached-the-sustainable-production.
[21] Schill E, Cuenot N, Genter A, et al. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultzsous-Forêts[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[22] Van RuthP, Hillis R, SwarbrickR, et al. The origin of overpressure in the Cooper Basin[C]//ASEG 16th Geophysical Conference and Exhibition. Adelaide, 2003.
[23] Quigley M C, Clark D, Sandiford M. Tectonic geomorphology of Australia[J]. Geological Society, 2010, 346(1): 243-265.
[24] Llanos E M, Zarrouk S J, Hogarth R A. Simulation of the habanero enhanced geothermal system (EGS)[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[25] McMahon A, Baisch S. Seismicity associated with the stimulation of the Enhanced Geothermal System at Habanero[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[26] 李福. 海南岛深层干热岩地热发电选址[C]//中国地热能:成就与展望 ——李四光倡导中国地热能开发利用40周年纪念大会暨中国地热 发展研讨会论文集. 北京: 中国能源研究会地热专业委员会, 2010. LiFu. Site selection of deep hot-dry rock geothermal power station in Hainan Province[C]//Chinese Geothermal Energy: Achievements And Prospects – Proceeding Of The 40th Anniversary Conference Of Li Siguang's Advocacy Of China's Geothermal Energy Development And Utilization. Beijing: China Energy Research Society of geothermal Professional Committee, 2010.
[27] 曾梅香, 李俊, 郑克桢, 等. 天津地区干热岩地热资源开发利用前景 浅析[C]//中国地热资源开发与保护——全国地热资源开发利用与 保护考察研讨会论文集. 北京: 中国能源研究会地热专业委员会, 2007. Zeng Meixiang, Li Jun, Zheng Kezhen,et al. Preliminary assessment of the developments of hot-dry rock geothermal resources in Tianjin[C]//Developments and conservation of geothermal resources in China, Proceeding of conference of developments and conservation of geothermal resources in China. Beijing: China Energy Research Society of geothermal Professional Committee, 2007.
[28] 徐立. 江苏地区地热资源综合利用研究[D]. 南京: 南京大学, 2014. Xu Li. Studies on multi-purpose utilizations of eothermal energy in Jiangso Province[D]. Nanjing: Nanjing University, 2014.
[29] 孙知新, 李百祥, 王志林. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, 2011, 38(2): 119-124. Sun Zhixin, Li Baixiang, Wang Zhilin. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 119-124.
[30] CAGS. The first scientific drilling project for hot dry rock launched in China[EB/OL].[2015-03-31]. http://en.cags.ac.cn/News/9794.htm.
[31] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 33(5): 5-31.
[32] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进 展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock) [J].Science & Technology Revies, 2012, 30(32): 42-45.
[33] 中国地质科学院水文地质环境地质研究所. 我国第一口干热岩 科学钻探孔正式开钻[EB/OL]. [2015-05-22]. http://www.iheg.org.cn/ content-485-2941.html.
[34] Sherburn S, Sewell S, Bannister S, et al. Microseismicity at Rotokawa geothermal field, New Zealand, 2008-2012[J]. Geothermics, 2015, 54: 23-34.
[35] Bannister S, Sherburn S, Powell T, et al. Microearthquakes at the Rotokawa geothermal field, New Zealand[J]. GRC Trans, 2008, 32: 259-264.
[36] Foulger G. Geothermal exploration and reservoir monitoring using earthquakes and the passive seismic method[J]. Geothermics, 1982, 11 (4):259-268.
[37] Luschen E, von Hartmann H, Thomas R, et al. 3D seismic survey for a petrothermal (egs) research project in crystalline rocks of Saxony, Germany[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[38] 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科 学, 2003, 5(1): 42-47. Duo Ji. A typical Temperature geothermal system[J]. China Engineering Sciences, 2003, 5(1): 42-47.
[39] Volpi G, Manzella A, Fiordelisi A. Investigation of geothermal structures by magnetotellurics (MT): An example from the Mt. Amiata area, Italy[J]. Geothermics, 2003, 32(2): 131-145.
[40] Oskooi B, Manzella A. 2D inversion of the Magnetotelluric data from Travale Geothermal Field in Italy[J]. Journal of the Earth & Space Physics, 2011, 36(4): 1-18.
[41] Schwarz G, Haak V, Rath V. Electrical conductivity studies in the Travale geothermal field, Italy[J]. Geothermics, 1985, 14(5): 653-661.
[42] Karastathis V K, Papoulia J, Di Fiore B, et al. Deep structure investigations of the geothermal field of the North Euboean Gulf,Greece, using 3-D local earthquake tomography and Curie Point Depth analysis[J]. Journal of Volcanology and Geothermal Research, 2011, 206(3): 106-120..
[43] 丁仲礼. 固体地球科学研究方法[M]. 北京: 科学出版社, 2013. Ding Zhongli. Research methodology of solid earth[M]. Beijing: Science Press, 2013.
[44] Geddes C J, Curlett H B. Leveraging a new energy source to enhance heavyoil and oilsands production[C]//SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers, 2005.
[45] Polizzotti R S, Hirsch L, Herhold A B, et al. Hydrothermal drilling method and system: US Patent 6742603[P]. 2004-06-01.
[46] Schill E, Cuenot N, Genter A, et al. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultzsous-Forêts[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[47] Jung R, Rumhydraulic mel F, Jupe A, et al. Large-scale hydraulic injections in the granitic basement in the European HDR programme at Soultz, France[C]//3rd Int. Hot Dry Rock Forum. Santa Fe, NM, 1996.
[48] Jung H B, Shao H, Heldebrant D J, et al. Stimuli-responsive/ rheoreversible hydraulic fracturing fluids for enhanced geothermal systems[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[49] Grubelich M C, King D, Knudsen S, et al. An overview of a high energy stimulation technique for geothermal applications[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[50] Calò M, Dorbath C. Different behaviours of the seismic velocity field at Soultz-sous-Forêts revealed by 4-D seismic tomography: Case study of GPK3 and GPK2 injection tests[J]. Geophysical Journal International, 2013, 194(2): 1119-1137.
[52] Maurer V, Cuenot N, Gaucher E, et al. Seismic Monitoring of the Rittershoffen EGS Project (Alsace, France) [C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[53] anjuan B, Pinault J L, Rose P, et al. Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005[J]. Geothermics, 2006, 35(5): 622-653.
[54] Rose P E, Capuno V, Peh A, et al. The use of naphthalene sulfonates as tracers in high temperature geothermal systems[C]//Proceedings of the 23rd Annual PNOC-EDC Geothermal Conference. 2002: 53-58.
[54] Rose P E, Johnson S D, Kilbourn P, et al. Tracer testing at Dixie Valley, Nevada using 1-naphthalene sulfonate and 2, 6-naphthalene disulfonate[C]// Proceedings, Twenty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2002: 28-30.
[55] Rose P E, Johnson S D, Kilbourn P, et al. Tracer testing at Dixie Valley, Nevada using 1-naphthalene sulfonate and 2, 6-naphthalene disulfonate[C]//Proceedings, Twenty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2002: 28-30.
[56] Pope E C, Bird D K, Arnórsson S. Stable isotopes of hydrothermal minerals as tracers for geothermal fluids in Iceland[J]. Geothermics, 2014, 49: 99-110.
[57] Dean C, Reimus P, Oates J, et al. Laboratory experiments to characterize cation-exchanging tracer behavior for fracture surface area estimation at Newberry Crater, OR[J]. Geothermics, 2015, 53: 213-224.
[58] AltaRock. Thermally-degradable zonal isolation materials (TZIMS)[EB/ OL]. [2015-06-30]. http://altarockenergy.com/technology/tzim/.
[59] Holl H, Barton C. Habanero field: Structure and state of stress[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[60] Remoroza A I, Moghtaderi B, Doroodchi E. Fluid-Rock interaction under reservoir conditions pertinent to hot dry rock-engineered geothermal systems[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[61] Gelet R, Loret B, Khalili N. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity[J]. Journal of Geophysical Research, 2012, 117: 1-23.
[62] Ghassemi A, Zhou X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics, 2011, 40(1): 39-49.
[63] Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers & Geosciences, 2011, 37(6): 739-750.
[64] Brown D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the twenty-fifth workshop on geothermal reservoir engineering. Stanford University. 2000: 233-238.
[65] Pruess K. Enhanced geothermal systems (EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367.
[66] Friðleifsson G Ó, Elders W A, Albertsson A. The concept of the Iceland deep drilling project[J]. Geothermics, 2014, 49: 2-8.
[67] Einarsson Ó P, Johannesson T, Albertsson A, et al. 1 IDDP-2 well head equipment and test setup[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[68] Shnell J, Hiriart G, Nichols K, et al. Energy from ocean floor geothermal resources[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
文章导航

/