综述文章

T细胞抑制性受体及其免疫调节作用

  • 王帅威 ,
  • 罗雪瑞 ,
  • 李扬扬 ,
  • 林芳 ,
  • 李丹 ,
  • 袁晓君 ,
  • 李斌
展开
  • 1. 上海大学生命科学学院;上海市能源作物育种及应用重点实验室, 上海 200444;
    2. 中国科学院上海巴斯德研究所, 分子病毒与免疫学重点实验室, 上海 200031
王帅威,硕士研究生,研究方向为分子免疫,电子信箱:swwang@ips.ac.cnv

收稿日期: 2015-03-11

  修回日期: 2015-06-28

  网络出版日期: 2015-10-16

基金资助

国家重点基础研究计划(973计划)项目(2014CB541803,2014CB541903);国家自然科学基金项目(31200647,81330072,31370863,31170825,81271835,31200646,81302532,31300711);上海市学术委员会基础研究重大重点项目(14JC1406100);国家科技重大专项(2012ZX10002007-003)

Immune regulatory function of T cell-inhibitory receptors

  • WANG Shuaiwei ,
  • LUO Xuerui ,
  • LI Yangyang ,
  • LIN Fang ,
  • LI Dan ,
  • YUAN Xiaojun ,
  • LI Bin
Expand
  • 1. Shanghai Key Laboratory of Bio-energy Crops, College of Life Science, Shanghai University, Shanghai 200444, China;
    2. Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 2015-03-11

  Revised date: 2015-06-28

  Online published: 2015-10-16

摘要

T 淋巴细胞在免疫系统中发挥细胞免疫、免疫调节等功能。然而, T 细胞的过度激活会导致疾病(如哮喘、系统性红斑狼疮等)的发生, 抑制T 细胞的过度激活是免疫治疗的重要研究方向。T 细胞抑制性受体可通过与其配体结合调控T 细胞增殖或功能发挥, 并在过敏性疾病、移植排斥等治疗中作为治疗靶点。因此, 进一步解析T 细胞抑制性受体的三维结构、配体-受体复合物组分及其下信游号通路将有助于免疫治疗的发展。本综述总结了GITR、CTLA-4、BTLA、PD-1、LAIR-1、TIM-3、TIGIT 等T 细胞抑制性受体的生理生化特性、与其配体结合后对T 细胞免疫功能的调节以及抗体药物的研究进展。

本文引用格式

王帅威 , 罗雪瑞 , 李扬扬 , 林芳 , 李丹 , 袁晓君 , 李斌 . T细胞抑制性受体及其免疫调节作用[J]. 科技导报, 2015 , 33(18) : 84 -90 . DOI: 10.3981/j.issn.1000-7857.2015.18.014

Abstract

T lymphocytes play a fundamental role in cellular immune and immune regulation in immune system. However, the overactivation of T cells may induce many diseases including asthma, systemic lupus-erythematosus. It is crucial to control the T cell over-activation in the immunotherapy field. The inhibitory receptors of T cells can regulate proliferation and function of T cells by contacting with their ligands. Latest studies have indicated that T cell inhibitory receptors targeting therapy can attenuate the symptoms of diseases and graft rejection. Intensive study on the regulation of T cells would provide effective strategies for preventing and treating immune diseases.

参考文献

[1] Cohen A D, Diab A, Perales M A, et al. Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity [J]. Cancer Research, 2006, 66(9): 4904-4912.
[2] Greenfield E A, Nguyen K A, Kuchroo V K, et al. CD28/B7 constimulation: A review[J]. Critical reviews in immunology, 1998, 18(5): 389-418.
[3] Brahmer J R, Drake C G, Wollner I, et al. Phase I study of singleagent anti-programmed death-1 (MDX-1106) in refractory solid tumors safety clinical activity, pharmacodyamic and immunologic correlates[J]. Journal of Clinical Oncology, 2010, 28(19): 3167-3175.
[4] Daniel S.Chen, Ira Mellman. Oncology meets immunology: The cancerimmunity cycle[J]. Immunity, 2013, 39(1): 1-10.
[5] Ronchetti S, Zollo O, Bruscoli S, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations[J]. European Journal of Immunology, 2004, 34(3): 613-622.
[6] Nocentini G, Ronchetti S, Cuzzocrea S, et al. GITR/GITRL: More than an effector T cell co-stimulatory system[J]. European Journal of Immunology, 2007, 37(5): 1165-1169.
[7] Nocentini G, Giunchi L, Ronchetti S, et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(12): 6216-6221.
[8] McHughRS,WitterMJ,PiccirilloCA,etal.CD4+CD25+immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor[J]. Immunity, 2002, 16(2): 311-323.
[9] Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance [J]. Nature Immunology, 2002, 3(2): 135-142.
[10] David A S, Sadna B. GITR pathway activation arrogates tumor immune suppression through loss of regulatory T cell lineage stability[J]. Cancer Immunology Research, 2013, 1(5): 613-618.
[11] Tone Y, Kidani Y, Ogawa C, et al. Gene expression in the Gitr locus is regulated by NF-кB and Foxp3 through an enhancer[J]. Journal of Immunology, 2014, 192(8): 3915-3924.
[12] Kim J D, Choi B K, Bae J S, et al. Cloning and characterization of GITR ligand[J]. Genes and Immunity, 2003, 4(8): 564-569.
[13] Kanamaru F, Youngnak P, Hashiguchi M, et al. Costimulation glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells[J]. Journal of Immunology, 2004, 172(12): 7306-7314.
[14] Sonawane S B, Kim J I, Lee M K, et al. GITR blockade facilitates Treg mediated allograft survival[J]. Transplantation, 2009, 88(10): 1169-1177.
[15] Kohm A P, Williams J S, Miller S D. Cutting edge: Ligation of the glucocorticoid induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis[J]. Journal of Immunology, 2004, 172(8): 4686-4690.
[16] Ramirez-Montagut T, Chow A, Lu S, et al. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ ignorance to melanoma differentiation antigens and enhances antitumor immunity[J]. Journal of Immunology, 2006, 176(11): 6434-6442.
[17] Ko K, Yamarak S, Namamura K, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor infilting Foxp3+ CD25+CD4+ regulatory T cells[J]. The Journal of Experiment Medicine, 2005, 202(7): 885-891.
[18] Zhou Z, Song X, Berezov A, et al. Human glucocorticoid-induced TNF receptor ligand regulates its signaling activity through multiple oligomerization states[J]. Proceedings of the National Academy of Sciences, 2008, 105(14): 5465-5470.
[19] Thompson C B, Allison J P. The emerging role of CTLA-4 as an immune attenuator[J]. Immunity, 1997, 7(4): 445-450.
[20] Salomon B, Lenschow D J, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes[J]. Immunity, 2000, 12(4): 431-440.
[21] Read S, Malmstrom V, Powrie F, et al. Cytotoxic T lymphocyteassociated antigen 4 plays an essential role in the function of CD25+ CD4+regulatory cells that control intestinal inflammation[J]. Journal of Experiments Medicine, 2000, 192(2): 295-302.
[22] Chambers C A, Allison J P. Cytotoxic T lymphocyte antigen-4(CTLA-4) regulates primary and secondary peptide-specific CD4+ T cell responses[J]. Proceedings of the Nationnal Academy of Sciences of the United States of America, 1999, 96(15): 8603-8608.
[23] Krummel M F, Allison J P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation[J]. The Journal of Expreimental Medicine, 1995. 182(7): 459-465.
[24] van der Merwe P A, Bodian D L, Daenke S, et al. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics[J]. The Journal of Experimental Medicine, 1997, 185(3): 393-404.
[25] Linsley P S, Golstein P. Lymphocyte activation: T-cell regulation by CTLA-4[J]. Current Biology: B, 1996, 6(4): 398-400.
[26] Kong K F, Fu G, Zhang Y, et al. Protein kinase C-ηcontrols CTLA-4 mediated regulatory T cell function[J]. Nature mmunology, 2014, 15 (5): 465-472.
[27] Lenschow D J, Herold K C, Rhee L, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes[J]. Immunity, 1996, 5(3): 285-293.
[28] Keir M E, Butte M J, Freeman G J, et al. PD-1and its ligands in tolerance and immunity[J]. Annual Review of Immunology, 2008, 26 (10): 677-704.
[29] Walker L S, Abbas A K. The enemy within: keeping self-reactive T cells at bay in the periphery[J]. Annual Review of Immunology, 2002, 2(1): 11-9.
[30] Li L, Boussiotis V A. Physiologic regulation of central and peripheral T cell tolerance: Lessons for therapeutic applications[J]. Journal of Moleculaer Medicine, 2006, 84(11): 887-899.
[31] Francisco L M, Sage P T, Sharpe A H. The PD-1 pathway in tolerance and autoimmunity[J]. Immunological Review, 2010, 236(29):219-242.
[32] Brown J A, Dorfman D M, Sullivan E L, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production[J]. Journal of Immunology, 2003, 170(3): 1257-66.
[33] Latchman Y, Wood C R, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation[J]. Nature Immunology, 2001, 2 (3): 261-268.
[34] Tseng S Y, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells[J]. The Journal of Experimental Meicine, 2001, 193(7): 839-846.
[35] Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion [J]. Nature Medicine, 1999, 5(12): 1365-1369.
[36] Terawaki S, Chikuma S, Shibayama S, et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity[J]. Journal of Imunology, 2011, 186(5): 2772-2779.
[37] Francisco L M, Sage P T, Sharpe A H. The PD-1 pathway in tolerance and autoimmunity[J]. Immunological Reviews, 2009, 236 (29): 219-242.
[38] Choi Y S, Kageyama R, Eto D, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6[J]. Immunity, 2011, 34(6): 932-946.
[39] Nurieva R I, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages[J]. Immunity, 2008, 29(1): 138-149.
[40] Morita R, Schmitt N, Bentebibel S E, et al. Human blood CXCR5+ CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion[J]. Immunity, 2011, 34(1): 108-121.
[41] Schaerli P, Willimann K, Lang A B, et al. CXC chemokine receptor 5 expression defies follicular homing T cells with B cell helper function [J]. The Journal of Experimental Medicine, 2000, 192(11): 1553-1562.
[42] Saito R, Onodera H, Tago H, et al. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients[J]. Journal of Neuroimmunology, 2005, 170(1): 172-178.
[43] Simpson N, Gatenby P A, Wilson A, et al. Expansion of circulating T cells resembling follicular helper T cells is a fied phenotype that identifies a subset of severe systemic lupus erythematosus[J]. Arthritis and Rheumatism, 2010, 62(1): 234-244.
[44] Polanczyk M J, Hopke C, Vandenbark, A A, et al. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1)[J]. International Immunology, 2007, 19(3): 337-343.
[45] Wang L, Pino-Lagos K, de Vries VC, et al. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 + CD4+ regulatory T cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(27): 9331-9336.
[46] Francisco L M, Salinas V H, Brown K E, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells [J]. The Journal of Experimental Medicine, 2009, 206(13): 3015-3029.
[47] Wang C, Li Y, Proctor T M, et al. Down-modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis[J].Journal of Neuroscience Research, 2010, 88(1): 7-15.
[48] Amarnath S, Mangus C W, Wang J C, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells[J]. Science Translational Medicine, 2011, 3(111): 111-120.
[49] Francisco L M, Sage P T, Sharpe A H, et al. The PD-1 pathway in tolerance and autoimmunity[J]. Immunological Reviews, 2009, 236 (29): 219-242.
[50] Good-Jacobson K L, Szumilas C G, Chen L, et al. PD-1 regulates germinal center B cell survival and the formation and affiity of longlived plasma cells[J]. Nature Immunology, 2010, 11(6): 535-542.
[51] Francisco L M, Sage P T, Sharpe A H. The PD-1 pathway in tolerance and autoimmunity[J]. Immunological Reviews, 2010, 236(1): 219-242.
[52] Patsoukis N, Sari D, Boussiotis V A. PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A[J]. Cell Cycle, 2012, 11(23): 4305-4309.
[53] Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity[J]. Annual Review of Immunology, 2008, 26 (29): 677-704.
[54] Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation[J]. Science Signaling, 2012, 5 (230): ra46-ra46.
[55] Topalian S L, Drake C G, Pardoll D M, et al. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity[J]. Current Opinion in Immunology, 2012, 24(2): 207-212.
[56] Greenwald R J, Freeman G J, Sharpe A H, et al. The B7 family revisited[J]. Annual Review of Immunology, 2005, 23(10): 515-548.
[57] Sedy J R, Gavrieli M, Potter K G, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator[J]. Nature Immunology, 2005, 6(1): 90-98.
[58] Croft M. The evolving crosstalk between co-stimulatory and coinhibitory receptors: HVEM-BTLA[J]. Trends in Immunology, 2005, 26(6): 292-294.
[59] Owada T, Watanabe N, Oki M, et al. Activation-induced accumulation of B and T lymphocyte attenuator at the immunological synapse in CD4+ T cells[J]. Journal of Leukocyte Biology, 2010, 87(3):425-432.
[60] Gonzalez L C, Loyet K M, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(4): 1116-1121.
[61] Cheung T C, Humphreys I R, Potter K G, et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13218-13223.
[62] Zhang H X, Zhu B, Fu X X, et al. BTLA associates with increased Foxp3 expression in CD4+ T cells in dextran sulfate sodium-induced colitis[J]. The Journal of Experimental Medicine, 2015, 8 (2): 1259-1269.
[63] Tao R, Wang L, Murphy K M, et al. Regulatory T cell expression of herpesvirus entry mediator suppresses the function of B and T lymphocyte attenuator-positive effector T cells[J]. The Journal of Immunology, 2008, 180(10): 6649-6655.
[64] Meyaard L, Adema G J, Chang C, et al. LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes [J]. Immunity, 1997, 7(2): 283-290.
[65] Jansen C A, Cruijsen C W A, de Ruiter T, et al. Regulated expression of the inhibitory receptor LAIR-1 on human peripheral T cells during T cell activation and differentiation[J]. European Journal of Immunology, 2007, 37(4): 914-924.
[66] Lebbink R J, de Ruiter T, Adelmeijer J, et al. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1[J]. The Journal of Experimental Medicine, 2006, 203(6): 1419-1425.
[67] Kaech S M, Wherry E J, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development[J]. Nature Reviews immunology, 2002, 2(4): 251-262.
[68] Sprent J, Surh C D. Generation and maintenance of memory T cells[J]. Current Opinion in Immunology, 2001, 13(2): 248-254.
[69] Maasho K, Masilamani M, Valas R, et al. The inhibitory leukocyteassociated Ig-like receptor-1 (LAIR-1) is expressed at high levels by human naive T cells and inhibits TCR mediated activation[J]. Molecular Immunology, 2005, 42(12): 1521-1530.
[70] Monney L, Sabatos C A, Gaglia J L, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002, 415(6871): 536-541.
[71] Khademi M, Illés Z, Gielen A W, et al. T Cell Ig-and mucin-domaincontaining molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluidderived mononuclear cells in multiple sclerosis[J]. The Journal of Immunology, 2004, 172(11): 7169-7176.
[72] Hastings W D, Anderson D E, Kassam N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines [J]. European Journal Of Immunology, 2009, 39(9): 2492-2501.
[73] Koguchi K, Anderson D E, Yang L, et al. Dysregulated T cell expression of TIM3 in multiple sclerosis[J]. The Journal of Experimental Medicine, 2006, 203(6): 1413-1418.
[74] Yang L, Anderson D E, Kuchroo J, et al. Lack of TIM-3 immunoregulation in multiple sclerosis[J]. The Journal of Immunology, 2008, 180(7): 4409-4414.
[75] Anderson A C, Anderson D E, Bregoli L, et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science, 2007, 318(5853): 1141-1143.
[76] Zhu C, Anderson A C, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nature Immunology, 2005, 6(12): 1245-1252.
[77] Sánchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance[J]. Nature Immunology, 2003, 4(11): 1093-1101.
[78] Anderson A C, Lord G M, Dardalhon V, et al. T-bet, a Th1 transcription factor regulates the expression of Tim-3[J]. European Journal of Immunology, 2010, 40(3): 859-866.
[79] Szabo S J, Kim S T, Costa G L, et al. A novel transcription factor, Tbet, directs Th1 lineage commitment[J]. Cell, 2000, 100(6): 655-669.
[80] Chae S C, Park Y R, Shim S C, et al. The polymorphisms of Th1 cell surface gene Tim-3 are associated in a Korean population with rheumatoid arthritis[J]. Immunology Letters, 2004, 95(1): 91-95.
[81] Graves P E, Siroux V, Guerra S, et al. Association of atopy andeczema with polymorphisms in T-cell immunoglobulin domain and mucin domain-IL-2-inducible T-cell kinase gene cluster in chromosome 5q33[J]. The Journal of Allergy and Clinical Immunology, 2005, 116 (3): 650-656.
[82] Imaizumi T, Kumagai M, Sasaki N, et al. Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells[J]. Journal of Leukocyte Immunology, 2002, 72(3): 486-491.
[83] Niwa H, Satoh T, Matsushima Y, et al. Stable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic tool for Th1-and/or Th17-mediated skin inflammation[J]. Clinical Immunology, 2009, 132(2): 184-194.
[84] Wang F, He W, Zhou H, et al. The Tim-3 ligand galectin-9 negatively regulates CD8+ alloreactive T cell and prolongs survival of skin graft [J]. Cell Immunology, 2007, 250(1): 68-74.
[85] Golden-Mason L, Palmer B E, Kassam N, et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells[J]. Journal of Virology, 2009, 83(18): 9122-9130.
[86] Jones R B, Ndhlovu L C, Barbour J D, et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection[J]. The Journal of Experimental Medicine, 2008, 205(12): 2763-2779.
[87] Huang Y H, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and eahaustion[J]. Nature, 2015, 517(7534): 386-390.
[88] Joller N, Hafler J, Brynedal B, et al. Cutting edge: TIGIT has T cellintrinsic inhibitory functions[J]. Journal of Immunology, 2011, 186(3): 1338-1342.
[89] Levin S D, Taft D W, Brandt C S, et al. Vstm3 is a member of the CD28 family and an important modulator of T cell function[J]. European Journal of Immunology, 2011, 41(4): 902-915.
[90] Tahara-Hanaoka S, Shibuya K, Kai H, et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor [J]. Blood, 2006, 107(4): 1491-1496.
[91] Zhang T, Wang J, Zhou X, et al. Increased expression of TIGIT on CD4+ T cells ameliorates immune-mediated bone marrow failure of aplastic anemia[J]. Journal of Cellular Biochemistry, 2014, 115(11): 1918-1927.
文章导航

/