研究论文

煤层气藏三孔双渗直井井底压力响应数学模型

  • 曹海涛 ,
  • 伊向艺 ,
  • 车星祥 ,
  • 李成勇 ,
  • 王晓蕾
展开
  • 1. 成都理工大学能源学院, 成都 610059;
    2. 成都理工大学油气藏地质及开发国家重点实验室, 成都 610059;
    3. 大庆油田第五采油厂第三油矿, 大庆 163000
曹海涛,博士研究生,研究方向为油气田开发理论,电子信箱:cht198701@126.com。

收稿日期: 2015-05-21

  修回日期: 2015-08-01

  网络出版日期: 2015-10-16

基金资助

教育部博士学科点博导基金项目(20125122110017)

Triple-porosity and dual-permeability mathematical model for CBM vertical well

  • CAO Haitao ,
  • YI Xiangyi ,
  • CHE Xingxiang ,
  • LI Chengyong ,
  • WANG Xiaolei
Expand
  • 1. College of Energy Resource, Chengdu University of Technology, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. The Third Oil Deposit of No.5 Oil Production Plant, Daqing Oil Field, Daqing 163000, China

Received date: 2015-05-21

  Revised date: 2015-08-01

  Online published: 2015-10-16

摘要

国内煤岩储层压力和渗透率普遍偏低, 目前矿场主要采用注入/压降测试方法来求取地层参数, 但由于注入水无法进入基质孔隙, 测试数据无法反映基质解吸特征。针对这一问题, 本文建立能够真实反映煤层气藏地层参数的三孔双渗渗流数学模型, 利用拉氏变换和Stehfest 数值反演方法对模型进行求解, 获取不同边界条件(径向无限大、外边界定压以及外边界封闭)下的直井井底拉氏空间拟压力解析解, 绘制无因次拟压力和无因次拟压力导数与无因次时间的双对数曲线, 并根据曲线特征对三孔双渗煤岩储层直井渗流阶段进行划分, 对影响井底压力响应特征的关键参数进行分析, 为煤层气的试井精细解释提供理论依据。

本文引用格式

曹海涛 , 伊向艺 , 车星祥 , 李成勇 , 王晓蕾 . 煤层气藏三孔双渗直井井底压力响应数学模型[J]. 科技导报, 2015 , 33(18) : 28 -33 . DOI: 10.3981/j.issn.1000-7857.2015.18.004

Abstract

Most of the coal reservoirs in China are of low-permeability and low-pressure, and the injection/fall off test is usually used to correctly evaluate formation parameters. But because water molecules can't enter the matrix porosity, the adsorption and desorption characteristics of the matrix can't be reflected. Concerning this issue, a triple-porosity and dual-permeability mathematical model has been established. Accurate solution to this model under different outer boundary conditions(Infinite, no flow and constant pressure)is obtained by use of Laplace transformation and Stehfest numerical inversion. According to the analysis in Laplace domain, the type curves of dimensionless pressure and pressure derivative are graphically illustrated. The pressure decline performance under the effects of CBM reservoir properties are discussed. A theoretical basis for CBM well test has been provided.

参考文献

[1] 石军太, 李相方, 徐兵祥, 等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学: 物理学, 力学, 天文学, 2013, 43(12): 1547-1557. Shi Juntai, Li Xiangfang, Xu Bingxiang, et al. Review on desorptiondiffusion-flow model of coal-bed methane[J]. Scientia Sinica: Physica, Mechanica & Astronomica. 2013, 43(12): 1547-1557.
[2] 雍进军. 基于数学最优化理论的煤层气开发选区模型建立及验证[J]. 煤炭技术, 2014, 33(4): 140-141. Yong Jinjun. Coal bed methane development and validation of model selection based on mathematical optimization theory[J]. Coal Technology, 2014, 33(4): 140-141.
[3] Reeves S, Pekot L. Advanced reservoir modeling in desorptioncontrolled reservoirs[C]. SPE Rocky Mountain Petroleum Technology Conference, Keystone, Colorado, May 21-23, 2001.
[4] 张先敏, 同登科. 煤层气三孔双渗流动模型及压力分析[J]. 力学季刊, 2008, 29(4): 578-582. Zhang Xianmin, Tong Dengke. Pressure transient analysis for coal seams with Triple-porosity/dual-permeability model[J]. Chinese Quarterly of Mechanics, 2008, 29(4): 578-582.
[5] 张先敏, 同登科. 考虑井筒储集和表皮系数的煤层气三孔双渗模型 [J]. 特种油气藏, 2008, 15(2): 47-49. Zhang Xianmin, Tong Dengke.Triple-porosity/dual-permeability model for coal bed methane considering wellbore storage and skin effects[J]. Special Oil and Gas Reservoirs, 2008, 15(2): 47-49.
[6] 周芊芊. 煤层气三孔双渗试井分析方法技术研究[J]. 科学技术与工程, 2013, 13(9): 2357-2362. Zhou Qianqian. CBM welltest analysis technology of Triple-porosity/ dual-permeability[J]. Science Technology and Engineering, 2013, 13(9): 2357-2362.
[7] 石丽娜, 杜庆军, 同登科, 等. 煤层气窜流-扩散过程及其对开发效果的影响[J]. 西南石油大学学报: 自然科学版, 2011, 33(3): 137-140. Shi Lina, Du Qingjun, Tong Dengke, et al. The channeling-diffusion process of coal bed methane and their influences on development effect [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2011, 33(3): 137-140.
[8] 赵金, 张遂安. 煤层气井底流压生产动态研究[J]. 煤田地质与勘探, 2013, 41(2): 22-28. Zhao Jin, Zhang Sui'an. Production dynamics of CBM bottom hole pressure[J]. Coal Geology & Exploration, 2013, 41(2): 22-28.
[9] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2010. Kong Xiangyan. Advanced mechanics of fluid flow in porous media[M]. Hefei: University of Science and Technology of China Press, 2010.
[10] Xu B, Li X, Haghighi M, et al. An analytical model for desorption area in coal-bed methane production wells[J]. Fuel, 2013, 106: 766-772.
[11] Rahman M K, Rahman M M, Joarder A H. Analytical production modeling for hydraulically fractured gas reservoirs[J]. Petroleum science and technology, 2007, 25(6): 683-704.
[12] Pan Z, Connell L D. Modelling permeability for coal reservoirs: A review of analytical models and testing data[J]. International Journal of Coal Geology, 2012, 92: 1-44.
文章导航

/