专题论文

导电材料在膜分离领域中的应用

  • 李洪懿 ,
  • 陈可可 ,
  • 翟丁 ,
  • 周勇 ,
  • 高从堦
展开
  • 1. 杭州水处理技术研究开发中心有限公司, 杭州310012;
    2. 浙江工业大学海洋学院, 杭州310014
李洪懿,硕士研究生,研究方向为膜与膜分离过程,电子邮箱:flyflycom@126.com

收稿日期: 2015-05-01

  修回日期: 2015-05-30

  网络出版日期: 2015-08-14

基金资助

国家高技术研究发展计划(863计划)项目(2012AA03A608)

Applications of conductive materials in membrane separation industry

  • LI Hongyi ,
  • CHEN Keke ,
  • ZHAI Ding ,
  • ZHOU Yong ,
  • GAO Congjie
Expand
  • 1. Hangzhou Water Treatment Technology Development Center, Hangzhou 310012, China;
    2. Ocean College, Zhejiang University of Technology, Hangzhou 310014, China

Received date: 2015-05-01

  Revised date: 2015-05-30

  Online published: 2015-08-14

摘要

膜分离技术是20 世纪60 年代迅速崛起的一门分离新技术。导电材料多应用于特殊分离,但现在开始应用于传统分离中。导电聚合物的发现,使导电材料在制备分离膜方面获得迅速发展。导电聚合物复合膜具有导电聚合物的特性,又具有绝缘聚合物膜的柔韧性及易加工性。本文综述导电材料制备分离膜的方法、分离膜性能的改进及应用的研究进展。

本文引用格式

李洪懿 , 陈可可 , 翟丁 , 周勇 , 高从堦 . 导电材料在膜分离领域中的应用[J]. 科技导报, 2015 , 33(14) : 18 -23 . DOI: 10.3981/j.issn.1000-7857.2015.14.002

Abstract

The membrane separation technology developed rapidly in the 1960s, as a new separation technology. The conductive materials are not only used in the special separation, but also in the traditional separation. Since the discovery of conducting polymers, the use of conductive materials in the preparation of the separation membrane began to develop quickly. The conductive polymer composite membrane not only has the characteristics of conductive polymers, but also has the flexibility and processability of the insulating polymer membranes. This paper reviews the use of conductive materials in the preparation of the separation membrane, the improvement and the applications of the separation membrane prepared by conductive materials.

参考文献

[1] Zhou C O, Too G G, Wallace A M, et al. Protein transport and separation using polypyrrole coated, platinised polyvinylidene fluoride membranes[J]. Reactive and Functional Polymers, 2000, 45(3): 217-226.
[2] Burgmayer P, Murray R W. An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode[J]. Journal of the American Chemical Society, 1982, 104(22): 6139-6140.
[3] Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977(16): 578-580.
[4] Chiang C K, Fincher Jr C R, Park Y W, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17): 1098.
[5] 张福强, 王立新. 本征导电聚合物的智能性[J]. 功能高分子学报, 1996, 9(3): 461-467. Zhang Fuqiang, Wang Lixin. Intelligent of intrinsic conducting polymers[J]. Journal of Functional Polymers, 1996, 9(3): 461-467.
[6] Price W E, Too C O, Wallace G G, et al. Development of membrane systems based on conducting polymers[J]. Synthetic Metals, 1999, 102 (1): 1338-1341.
[7] 文命清, 随贤栋. 金属膜的研究进展[J]. 材料导报, 2002, 16(1): 25-27. Wen Mingqing, Sui Xiandong. Progress in research on metal membrane[J]. Materials Review, 2002, 16(1): 25-27.
[8] Li Z Y, Maeda H, Kusakabe K, et al. Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method[J]. Journal of Membrane Science, 1993, 78(3): 247-254.
[9] Xu X, Yang Q, Wang Y, et al. Biodegradable electrospun poly (Llactide) fibers containing antibacterial silver nanoparticles[J]. European Polymer Journal, 2006, 42(9): 2081-2087.
[10] Cho K H, Park J E, Osaka T, et al. The study of antimicrobial activity and preservative effects of nanosilveringredient[J]. Electrochimica Acta, 2005, 51(5): 956-960.
[11] Kang G, Cao Y. Development of antifouling reverse osmosis membranes for water treatment: Areview[J]. Water Research, 2012, 46 (3): 584-600.
[12] Lind M L, Jeong B H, Subramani A, et al. Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes[J]. Journal of Materials Research, 2009, 24(5): 1624-1631.
[13] Lee S Y, Kim H J, Patel R, et al. Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties[J]. Polymers for Advanced Technologies, 2007, 18(7): 562-568.
[14] Mollahosseini A, Rahimpour A, Jahamshahi M, et al. The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane[J]. Desalination, 2012, 306: 41-50.
[15] Sile-Yuksel M, Tas B, Koseoglu-Imer D Y, et al. Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism[J]. Desalination, 2014, 347: 120-130.
[16] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 250-254.
[17] Sokhan V P, Nicholson D, Quirke N. Transport properties of nitrogen in single walled carbon nanotubes[J]. The Journal of Chemical Physics, 2004, 120(8): 3855-3863.
[18] Matranga C, Bockrath B, Chopra N, et al. Raman spectroscopic investigation of gas interactions with an aligned multiwalled carbon nanotube membrane[J]. Langmuir, 2006, 22(3): 1235-1240.
[19] Kim S, Pechar T W, Marand E. Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation[J]. Desalination, 2006, 192(1): 330-339.
[20] Ismail A F, Rahim N H, Mustafa A, et al. Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes[J]. Separation and Purification Technology, 2011, 80(1): 20-31.
[21] Liu Y, Wang Q, Zhang L, et al. Dynamics and density profile of water in nanotubes as one-dimensional fluid[J]. Langmuir, 2005, 21(25): 12025-12030.
[22] Corry B. Designing carbon nanotube membranes for efficient water desalination[J]. The Journal of Physical Chemistry B, 2008, 112(5): 1427-1434.
[23] Choi J H, Jegal J, Kim W N. Modification of performances of various membranes using MWNTs as a modifier[C]//Macromolecular Symposia. WILEY-VCH Verlag, 2007, 249(1): 610-617.
[24] Narayan R J, Berry C J, Brigmon R L. Structural and biological properties of carbon nanotube composite films[J]. Materials Science and Engineering: B, 2005, 123(2): 123-129.
[25] Brunet L, Lyon D Y, Zodrow K, et al. Properties of membranes containing semi-dispersed carbon nanotubes[J]. Environmental Engineering Science, 2008, 25(4): 565-576.
[26] Park J S, Cho S M, Kim W J, et al. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphenenanosheets[J]. ACS Applied Materials &Interfaces, 2011, 3 (2): 360-368.
[27] Chen D, Wang X, Liu T, et al. Electrically conductive poly (vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly[J]. ACS Applied Materials & Interfaces, 2010, 2(7): 2005-2011.
[28] Liang J, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Materials, 2009, 19(14): 2297-2302.
[29] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium- leak- tight graphene- based membranes[J]. Science, 2012, 335(6067): 442-444.
[30] Raidongia K, Huang J. Nanofluidic ion transport through reconstructed layered materials[J]. Journal of the American Chemical Society, 2012, 134(40): 16528-16531.
[31] Sun P, Zhu M, Wang K, et al. Selective ion penetration of graphene oxide membranes[J]. Acs Nano, 2012, 7(1): 428-437.
[32] Qiu L, Zhang X, Yang W, et al. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration[J]. Chemical Communications, 2011, 47(20): 5810-5812.
[33] Wang N, Ji S, Zhang G, et al. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation[J]. Chemical Engineering Journal, 2012, 213: 318-329.
[34] Masuda T, Isobe E, Higashimura T, et al. Poly [1-(trimethylsilyl)-1- propyne]: A new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability[J]. Journal of the American Chemical Society, 1983, 105(25): 7473-7474.
[35] Masuda T, Isobe E, Higashimura T. Polymerization of 1-(trimethylsilyl)- 1- propyne by halidesof niobium (V) and tantalum (V) and polymer properties[J]. Macromolecules, 1985, 18(5): 841-845.
[36] Teraguchi M, Masuda T. Poly (diphenylacetylene) membranes with high gas permeability and remarkable chiral memory[J]. Macromolecules, 2002, 35(4): 1149-1151.
[37] Shida Y, Sakaguchi T, Shiotsuki M, et al. Synthesis and properties of poly (diphenylacetylenes) having hydroxyl groups[J]. Macromolecules, 2005, 38(10): 4096-4102.
[38] Sakaguchi T, Kameoka K, Hashimoto T. Synthesis of PEG-functionalized poly(diphenylacetylene)s and their gas permeation properties[J]. Journal of Applied Polymer Science, 2009, 113(6): 3504-3509.
[39] Yang X, Too C O, Sparrow L, et al. Polypyrrole-heparin system for the separation ofthrombin[J]. Reactive and Functional Polymers, 2002, 53 (1): 53-62.
[40] Gulsen D, Hacarloglu P, Toppare L, et al. Effect of preparation parameters on the performance of conductive composite gas separation membranes[J]. Journal of Membrane Science, 2001, 182(1): 29-39.
[41] Hacarlioglu P, Toppare L, Yilmaz L. Polycarbonate-polypyrrole mixed matrix gas separation membranes[J]. Journal of Membrane Science, 2003, 225(1): 51-62.
[42] Tishchenko G, Rosova E, Elyashevich G K, et al. Porosity of microporous polyethylene membranes modified with polypyrrole and their diffusion permeability to low-molecular weight substances[J]. Chemical Engineering Journal, 2000, 79(3): 211-217.
[43] Tishchenko G A, Dybal J, Stejskal J, et al. Electrical resistance and diffusion permeability of microporous polyethylene membranes modified with polypyrrole and polyaniline in solutions of electrolytes[J]. Journal of Membrane Science, 2002, 196(2): 279-287.
[44] Gohil G S, Binsu V V, Shahi V K. Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes[J]. Journal of Membrane Science, 2006, 280(1): 210-218.
[45] Shao L, Cheng X, Wang Z, et al. Tuning the performance of polypyrrolebased solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J]. Journal of Membrane Science, 2014, 452: 82-89.
[46] 何伟. 聚苯醚合成与改性应用前景广阔[J]. 中国石油和化工, 2003 (7): 67-69. He Wei. Application prosperous of synthesis and modification of polyphenyleneether[J]. China Petroleum and Chemical Industries, 2003 (7): 67-69.
[47] Itta A K, Tseng H H, Wey M Y. Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/ CH4 separation[J]. Journal of Membrane Science, 2011, 372(1): 387- 395.
[48] Sridhar S, Smitha B, Ramakrishna M, et al. Modified poly (phenylene oxide) membranes for the separation of carbon dioxide from methane[J]. Journal of Membrane Science, 2006, 280(1): 202-209.
[49] Gao L, Tang B, Wu P. An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry-wet phase inversion[J]. Journal of Membrane Science, 2009, 326(1): 168-177.
[50] Wu H, Tang B, Wu P. Novel ultrafiltration membranes prepared from a multi- walled carbonnanotubes/polymer composite[J]. Journal of Membrane Science, 2010, 362(1): 374-383.
[51] Chenar M P, Soltanieh M, Matsuura T, et al. Application of Cardotype polyimide (PI) and polyphenylene oxide (P2PO) hollow fiber membranes in two-stage membrane systems for CO2/CH4 separation[J]. Journal of Membrane Science, 2008, 324(1): 85-94.
[52] 王丽华. 聚苯硫醚中空纤维微滤膜的研究(II)——拉伸工艺对中空纤 维结构与性能的影响[J]. 纺织学报, 2004, 25(1): 25-27. Wang Lihua.A study of PPS hollow fibrous microfiltration membranes (II)——The effect on structure and property of PPS hollow fibers in drawing process[J]. Journal of Textile Research, 2004, 25(1): 25-27.
[53] 王华东, 杨杰, 龙盛如, 等. 高性能结构材料聚苯硫醚砜[J]. 高分子材 料科学与工程, 2003, 19(3): 54-57. Wang Huadong, Yang Jie, Long Shengru, et al. Study on the high performance polymers polyphenylenesulfide sulfone[J]. Polymeric Materials Science & Engineering, 2003, 19(3): 54-57.
[54] 王孝军, 黄恒梅, 于清泉, 等. 聚芳硫醚砜分离膜的制备——相图及 微观结构[J]. 四川大学学报: 工程科学版, 2008(5): 99-105. Wang Xiaojun, Huang Hengmei, Yu Qingquan, et al. The preparation of PASS membrane: Phase diagram and morphology[J]. Journal of Sichuan University: Engineering Science Edition, 2008(5): 99-105.
[55] 王孝军, 于清泉, 黄恒梅, 等. 聚芳硫醚砜分离膜的制备——制膜条 件对分离性能的影响[J]. 高分子材料科学与工程, 2010, 26(10): 140-143. Wang Xiaojun, Yu Qingquan, Huang Hengmei, et al. The preparation of PASS membrane—Permeability and separation property[J]. Polymer Materials Science & Engineering, 2010, 26(10): 140-143.
[56] 刘岁林, 张刚, 刘静, 等. 聚芳硫醚酮酰胺分离膜的制备和表征[J]. 高 分子材料科学与工程, 2009, 25(2): 145-147. Liu Suilin, Zhang Gang, Liu Jing, et al. Preparation and characterization of polyarylenesulfide kentoneamide separation membrane[J]. Polymer Materials Science & Engineering, 2009, 25(2): 145-147.
[57] Hasbullah H, Kumbharkar S, Ismail A F, et al. Preparation of polyaniline asymmetric hollow fiber membranes and investigation towards gas separation performance[J]. Journal of Membrane Science, 2011, 366 (1): 116-124.
[58] GuptaY,HellgardtK,WakemanRJ.Enhancedpermeabilityof polyaniline based nano-membranes for gas separation[J]. Journal of Membrane Science, 2006, 282(1): 60-70.
[59] Chatzidaki E K, Favvas E P, Papageorgiou S K, et al. New polyimidepolyaniline hollow fibers: Synthesis, characterization and behavior in gas separation[J]. European Polymer Journal, 2007, 43(12): 5010-5016.
[60] Zhao J, Wang Z, Wang J, et al. High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation[J]. Journal of Membrane Science, 2012, 403: 203-215.
[61] Fan Z, Wang Z, Sun N, et al. Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers[J]. Journal of Membrane Science, 2008, 320(1): 363-371.
[62] Fan Z, Wang Z, Duan M, et al. Preparation and characterization of polyaniline/polysulfonenanocomposite ultrafiltration membrane[J]. Journal of Membrane Science, 2008, 310(1): 402-408.
[63] Zhao S, Wang Z, Wei X, et al. Comparison study of the effect of PVP and PANI nanofibers additives on membrane formation mechanism, structure and performance[J]. Journal of Membrane Science, 2011, 385: 110-122.
[64] Loh X X, Sairam M, Bismarck A, et al. Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents[J]. Journal of Membrane Science, 2009, 326(2): 635-642.
[65] Sairam M, Loh X X, Li K, et al. Nanoporous asymmetric polyaniline films for filtration of organic solvents[J]. Journal of Membrane Science, 2009, 330(1): 166-174.
文章导航

/