研究论文

基于SPH方法连续液滴撞击固壁面模拟

  • 潘建平 ,
  • 曾庆筠
展开
  • 江西理工大学建筑与测绘工程学院, 赣州341000
潘建平,副教授,研究方向为岩土工程减灾,电子信箱:71540065@qq.com

收稿日期: 2014-11-17

  修回日期: 2015-04-22

  网络出版日期: 2015-06-11

基金资助

国家自然科学基金项目(51204076);江西省科技支撑计划项目(20133BBG70103);江西理工大学2014年研究生创新专项

Simulation of continuous droplet impinging on solid surface based on SPH method

  • PAN Jianping ,
  • ZENG Qingyun
Expand
  • School of Architectural and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Received date: 2014-11-17

  Revised date: 2015-04-22

  Online published: 2015-06-11

摘要

为了研究连续液滴对固壁面的撞击影响, 引入一种纯Lagrange、无网格计算方法, 即光滑粒子流体动力学方法(SPH)。对连续液滴撞击固壁面的扩散、回弹及飞溅进行了数值模拟并与实验测试进行比对。结果表明:连续液滴撞击固壁面时, 液滴的自由表面变化具有许多不确定性, 其中次生液滴的产生和韦伯数的作用是影响液滴撞击扩散的主因。次生液滴的出现使得液滴扩散及飞溅变得更为明显, 韦伯数越大, 连续液滴的无量纲直径变化越快。模拟效果真实反映了液滴撞击过程, 可为类似撞击问题的仿真分析提供借鉴。

本文引用格式

潘建平 , 曾庆筠 . 基于SPH方法连续液滴撞击固壁面模拟[J]. 科技导报, 2015 , 33(11) : 13 -16 . DOI: 10.3981/j.issn.1000-7857.2015.11.001

Abstract

In order to study the continuous droplet impinging on solid surface, a pure Lagrange and meshless method, namely the smoothed particle hydrodynamics (SPH) method is used. The spreading, rebounding and splashing processes of the continuous droplet impinging on solid surface are simulated with the SPH, and the results are compared with experiments. It is shown that in the continuous droplets impinging on solid surface, there are many uncertainties with respect to the free surface of droplets. The effects of the secondary droplets and the Weber numbers might be the main factors that influence the impinging diffusion of droplets. The secondary droplets help the droplet spreading and splashing. With the increase of the Weber number, the dimensionless diameters of continuous droplets change faster. The simulation results truly reflect the impact process of droplets, to provide a reference for simulation analysis of similar impinging problem.

参考文献

[1] Rioboo R, Bauthier C, Conti J, et al. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids, 2003, 35(6): 648-652.
[2] Chen R H, Kuo M J, Chiu S L, et al. Impact of a compound drop on a dry surface[J]. Journal of Mechanical Science and Technology, 2007, 21: 1886-1891.
[3] 李大鸣, 李晓瑜, 林毅. 液滴冲击自由液面的SPH法数值模拟[J]. 中国科学: 技术科学, 2011, 41(8): 1055-1062. Li Daming, Li Xiaoyu, Lin Yi. Numerical simulation of droplet impacting liquid surface[J]. Scientia Sinica Technologica, 2011, 41(8): 1055-1062.
[4] 施明恒. 单个液滴碰击表面时的流体动力学特性[J]. 力学学报, 1985, 17(5): 419-425. Shi Mingheng. Behavior of a liquid droplet impinging on a solid surachievements in earthface
[J]. Acta Mechanica Sinica, 1985, 17(5): 419-425.
[5] Kim H Y, Chun J H. The recoiling of liquid droplets upon collision with solid surfaces[J]. Physics of Fluids, 2001, 13(3): 643-659.
[6] Fujimoto H, Ito S, Takezaki I. Experimental study of successive collision of two water droplets with a solid[J]. Experiments in Fluids, 2002, 33: 500-502.
[7] 权生林, 李维仲, 朱卫英. 水滴撞击固体表面实验研究[J]. 大连理工大学学报, 2009, 49(6): 832-836. Quan Shenglin, Li Weizhong, Zhu Weiying. Experimental study of water droplet impacted onto solid surfaces[J]. Journal of Dalian University of Technology, 2009, 49(6): 832-836.
[8] Li Daming, Bai Ling, Li Lingling, et al. SPH modeling of droplet impact on solid boundary[J]. Transactions of Tianjin University, 2014, 20: 112-117.
[9] 沈胜强, 崔艳艳, 郭亚丽. 液滴撞击等温斜面的数值模拟[J]. 热科学与技术, 2009, 8(3): 194-197. Shen Shengqiang, Cui Yanyan, Guo Yali. Numerical simulation of droplet striking on inclined isothermal surface[J]. Journal of Thermal Science and Technology, 2009, 8(3): 194-197.
[10] 梁刚涛, 沈胜强, 杨勇. 单液滴撞击平面液膜飞溅过程的CLSVOF模拟[J]. 热科学与技术, 2012, 11(1): 8-12. Liang Gangtao, Shen Shengqiang, Yang Yong. CLSVOF simulation for splashing of single drop impact on flat liquid film[J]. Journal of Thermal Science and Technology, 2012, 11(1): 8-12.
[11] Inamuro T, Tajima S, Ogino F. Lattice Boltzmann simulation of droplet collision dynamics[J]. International Journal of Heat and Mass Transfer, 2004, 47(21): 4649-4657.
[12] Li D M, Xu Y N, Li L L, et al. Tracking methods for free surface and simulation of a liquid droplet impacting on a solid surface based on SPH[J]. Journal of Hydrodynamics, 2011, 23(4): 447-456.
[13] Jiang T, Ouyang J, Li X, et al. Numerical study of a single drop impact onto a liquid film up to the consequent formation of a crown[J]. Journal of Applied Mechanics and Technical Physics, 2013, 54(5): 720-728.
[14] Lopez Y R, Roose D, Morfa C R. Dynamic particle refinement in SPH: Application to free surface flow and non-cohesive soil simulations[J]. Computational Mechanics, 2013, 51(5): 731-741.
[15] Liu G R, Liu M B. Smoothed particle hydrodynamics: A meshfree particle method[M]. Singapore: World Scientific Publishing, 2003.
[16] Liu M B, Liu G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76.
[17] 徐金中, 汤文辉. 高速碰撞SPH方法模拟中的初始光滑长度和粒子间距[J]. 计算物理, 2009, 26(4): 548-552. Xu Jinzhong, Tang Wenhui. Initial smoothing length and space between particles in SPH method for numerical simulation of highspeed impacts[J]. Chinese Journal of Computational Physics, 2009, 26 (4): 548-552.
[18] Lee S H, Hur N, Kang S. A numerical analysis of drop impact on liquid film by using a level set method[J]. Journal of Mechanical Science and Technology, 2011, 25(10): 2567-2572.
[19] Monaghan J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574.
[20] Wang A B, Chen C C. Splashing impact of a single drop onto very thin liquid films[J]. Physics of Fluids, 2000, 12(9): 2155-2158.
文章导航

/