[1] 冯长根, 邓霞飞, 向华, 等. 治疗乳腺癌的抗雌激素药物研究进展[J]. 中国新药杂志, 2006, 15(13): 1051-1057. Feng Changgen, Deng Xiafei, Xiang Hua, et al. Anti-estrogens: Current status and trends in the treatment of breast cancer[J]. Chinese Journal of New Drugs, 2006, 15(13): 1051-1057.
[2] Sun L, Wen L, Shao X, et al. Screening of chemicals with anti-estrogenic activity using in vitro and in vivo vitellogenin induction responses in zebrafish (Danio rerio)[J]. Chemosphere, 2010, 78(7): 793-799.
[3] Chumsri S, Howes T, Bao T, et al. Aromatase, aromatase inhibitors, and breast cancer[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 125(1-2): 13-22.
[4] Safe S, Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptorα cross-talk and mechanisms of action[J]. Chemical Research in Toxicology, 2003, 16(7): 807-816.
[5] Besse J P, Latour J F, Garric J. Anticancer drugs in surface waters: What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs[J]. Environment International, 2012, 39(1): 73–86.
[6] Long X, Nephew K P. Fulvestrant (ICI182,780)-dependent interacting proteins mediate immobilezation and degradation of estrogen receptoralpha[ J]. The Journal of Biological Chemistry, 2006, 281(14): 9607-9615.
[7] Dauvois S, White R, Parker M G. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling[J]. Journal of Cell Science, 1993, 106: 1377-1388.
[8] Shang Y, Brown M. Molecular determinants for the tissue speciÞcity of SERMs[J]. Science, 2002, 295(5564): 2465-2468.
[9] 段磊, 杨胜科, 王文科, 等. 环境中二噁英的浓度水平及其控制技术[J]. 地球科学与环境学报, 2006, 28(2): 84-88. Duan Lei, Yang Shengke, Wang Wenke, et al. Dioxins concentration in environment and its control technology[J]. Journal of Earth Sciences and Environment, 2006, 28(2): 84-88.
[10] 黄冬梅, 于慧娟, 沈晓盛. 水产品中多氯联苯检测方法的研究[J]. 食品科学, 2008, 29(7): 359-361. Huang Dongmei, Yu Huijuan, Shen Xiaosheng. Study an analytical method for trace polychlorobi-phenyls in aquatic products[J]. Food Science, 2008, 29(7): 359-361.
[11] 聂湘平, 安太成, 杨宇峰, 等. 珠江三角洲池塘养殖中多氯联苯的环境归趋[J]. 生态学报, 2005, 25(5): 1138-1145. Nie Xiangping, An Taicheng, Yang Yufeng, et al. Analys is of PCBs in the sediments and fish from freshwater fishponds in the Pearl River Delta, China[J]. Acta Ecologica Sinica, 2005, 25(5): 1138-1145.
[12] Colborn T, Vom S F S, Soto A M. Developmental effects of endocrinedisrupting chemicals in wildlife and humans[J]. Environmental Health Perspectives, 1993, 101(5): 378-384.
[13] Yang W, Lang Y, Bai J, et al. Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China[J]. Ecological Engineering, 2014, 74: 117-124.
[14] Nicolas J. Vitellogenesis in fish and the effect of polycyclic aromatic hydrocarbon contaminants[J]. Aquatic Toxicology, 1999, 45(2): 77-90.
[15] Cheshenko K, Pakdel F, Segner H, et al. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish[J]. General and Comparative Endocrinology, 2008, 155(1): 31-62.
[16] Gao S, Wang W, Tian H, et al. An Emerging water contaminant, semicarbazide, exerts an anti-estrogenic effect in Zebrafish (Danio rerio) [J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(3): 280-288.
[17] 高素, 汝少国. 氨基脲的毒性效应研究进展[J]. 环境科学研究, 2013, 26(6): 637-644. Gao Su, Ru Shaoguo. Research progress on the toxicity of semicarbazide[J] Research of Environmental Sciences, 2013, 26(6): 637-644.
[18] Maranghi F, Tassinari R, Marcoccia D, et al. The food contaminant semicarbazide acts as an endocrine disrupter: Evidence from an integrated in vivo in vitro approach[J]. Chemico-Biological Interaction, 2010, 183(1): 40–48.
[19] Liu C, Du Y, Zhou B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes[J]. Aquatic Toxicology, 2007, 85(4): 267–277.
[20] 史亚利, 潘媛媛, 王杰明, 等. 全氟化合物的环境问题[J]. 化学进展, 2009, 21(2/3): 369-376. Shi Yali, Pan Yuanyuan, Wang Jieming, et al. Perfluorinated chemicals related environmental problems[J]. Progress in Chemistry, 2009, 21(2/3): 369-376.
[21] Donath J, Nishino Y. Effects of partial versus pure antiestrogens on ovulation and the pituitary-ovarian axis in the rat[J]. Journal of Steroid Biochemistry and Molecular Biology, 1998, 66(4): 247-254.
[22] Spink D C, Lincoln D W, Dickerman H W, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes an extensive alteration of 17âestradiol metabolism in human breast cancer cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(17): 6917-6921.
[23] Spink D C, Eugster H P, Lincoln D W, et al. 17â-Estradiol hydroxylation catalyzed by human cytochrome P4501A1: A comparison of the activities induced by 2,3,7,8-tetrachloro-dibenzop-dioxin in MCF-7 cells with those from heterologous expression of the cDNA[J]. Archives of Biochemistry and Biophysics, 1990, 293(2): 342-348.
[24] Spink D C, Johnson J A, Connor S P, et al. Stimulation of 17â-estradiol metabolism in MCF-7 cells by bromochloro-and chloromethylsubstituted dibenzo-p-dioxins and dibenzofurans: Correlations with antiestrogenic activity[J]. Journal of Toxicology and Environmental Health, 1994, 41(4): 451-466.
[25] Ohtake F, Fujii-Kuriyama Y, Kato S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions[J]. Biochemical Pharmacology, 2009, 77(4): 474-484.
[26] Dauvois S, Danielian P S, White R, et al. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover[J]. Proceedings of the National Academy of Sciences of United States of America, 1992, 89(9): 4037-4041.
[27] Gibson M K, Nemmers L A, Beckman W C Jr, et al. The mechanism of ICI 164, 384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue[J]. Endocrinology, 1991, 129(4): 2000-2010.
[28] Reese J C, Katzenellenbogen B S. Examination of the DNA-binding ability of estrogen receptor in whole cells: Implications for hormonedependent transactivation and the actions of antiestrogens[J]. Molecular and Cellular Biolology, 1992, 12(10): 4531-4538.
[29] Okoumassoun L E, Averill-Bates D, Gagné F, et al. Assessing the estrogenic potential of organochlorine pesticides in primary cultures of male rainbow trout (Oncorhynchus mykiss) hepatocytes using vitellogenin as a biomarker[J]. Toxicology, 2002, 178(3): 193-207.
[30] Gao X, Petroff B K, Rozman K K, et al. Gonadotropin-releasing hormone (GnRH) partially reverses the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on ovulation in the immature gonadotropin-treated rat[J]. Toxicology, 2000, 147(1): 15-22.
[31] Zhang X, Hecker M, Park J W, et al. Time-dependent transcriptional profiles of genes of the hypothalamic-pituitary-gonadal axis in medaka (Oryzias latipes) exposed to fadrozole and 17beta-trenbolone[J]. Environmental Toxicology and Chemistry, 2008, 27(12): 2504-2511.
[32] Maranghi F, Tassinari R, Lagatta V, et al. Effects of the food contaminant semicarbazide following oral administration in juvenile Sprague-Dawley rats[J]. Food and Chemical Toxicology, 2009, 47(2): 472-479.
[33] 梁勇, 黄港住, 徐盈, 等. 2, 3, 7, 8-四氯代二苯并二英(TCDD)和苯并芘(B[a]P)对原代培养鲫鱼肝细胞中卵黄蛋白原诱导的影[J]. 科学通报, 2004, 49(16): 1605-1610. Liang Yong, Huang Gangwang, Xu Ying, et al. Effects of 2,3,7,8-TCDD and benzo[a]pyrene on modulating vitellogenin induction in primary culture of crucian carp (Carassius auratus) hepatocytes[J]. Chinese Science Bulletin, 2004, 49(16): 1605-1610.
[34] Kirby M F, Neall P, Bateman T A, et al. Hepatic ethoxyresorufin Odeethylase (EROD) activity in flounder (Platichthys flesus) from contaminant impacted estuaries of the United Kingdom: Continued monitoring 1999-2001[J]. Marine Pollution Bulletin, 2004, 49(1-2): 71-78.
[35] Kirby M F, Allen Y T, Dyer R A, et al. Surveys of plasma vitellogenin and intersex in male flounder (Platichthys flesus) as measures of endocrine disruption by estrogenic contamination in United Kingdom estuaries: Temporal trends, 1996 to 2001[J]. Environmental Toxicology and Chemistry, 2004, 23(3): 748-758.
[36] Odum J, Ashby J. Detection of aromatase inhibitors in vitro using rat ovary microsomes[J]. Toxicology Letters, 2002, 129(1-2): 119-122.
[37] Sanderson J T, Boerma J, Lansbergen G W, et al. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells[J]. Toxicology and Applied Pharmacology, 2002, 182(1): 44-54.
[38] Vinggaard A M, Hass U, Dalgaard M, et al. Prochloraz: An imidazole fungicide with multiple mechanisms of action[J]. International Journal of Andrology, 2006, 29(1): 186-192.
[39] Trösken E R, Scholz K, Lutz R W, et al. Comparative assessment of the inhibition of recombinant human CYP19 (aromatase) by azoles used in agriculture and as drugs[J]. Endocrine Research, 2004, 30(3): 387-394.
[40] Shilling A D, Carlson D B, Williams D E. Rainbow trout, Oncorhynchus mykiss, as a model for aromatase inhibition[J]. The Journal of Steroid Biochemistry and Molecular Biology, 1999, 70(1-3): 89-95.
[41] Ankley G T, Jensen K M, Durhan E J, et al. Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (Pimephales promelas) [J]. Toxicological Science, 2005, 86(2): 300-308.
[42] Ankley G T, Jensen K M, Kahl M D, et al. Ketoconazole in the fathead minnow (Pimephales promelas): Reproductive toxicity and biological compensation[J]. Environmental Toxicology and Chemistry, 2007, 26 (6): 1214-1223.
[43] Ankley G T, Bencic D C, Breen M S, et al. Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action[J]. Aquatic Toxicology, 2009, 92(3): 168-178.
[44] Walsh L P, Webster D R, Stocco D M. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene[J]. Journal of Endocrinology, 2000, 167(2): 253-263.
[45] Skolness S Y, Durhan E J, Garcia-Reyero N, et al. Effects of a shortterm exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas)[J]. Aquatic Toxicology, 2011, 103(3-4): 170-178.
[46] Ohno S, Shinoda S, Toyoshima S, et al. Effects of flavonoid phytochemicals on cortisol production and on activities of steroidogenic enzymes in human adrenocortical H295R cells[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2002, 80(3): 355–363.
[47] Ohno S, Matsumoto N, Watanabe M, et al. Flavonoid inhibition of overexpressed human 3beta-hydroxysteroid dehydrogenase type II[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2004, 88 (2): 175-182.
[48] Wong C K, Keung W M. Bovine adrenal 3 β -hydroxysteroid dehydrogenase (E.C. 1.1.1.145)/5-ene-4-ene isomerase (E.C. 5.3.3.1): Characterization and its inhibition by isoflavones[J]. The Journal of Steroid Biochemistry and Molecular Biology, 1999, 71(5-6): 191-202.
[49] Villeneuve D L, Blake L S, Brodin J D, et al. Effects of a 3 β -hydroxysteroid dehydrogenase inhibitor, trilostane, on the fathead minnow reproductive axis[J]. Toxicological Science, 2008, 104(1): 113-123.
[50] 史熊杰, 刘春生, 余珂, 等. 环境内分泌干扰物毒理学研究[J]. 化学进展, 2009, 21(2-3): 340-349. Shi Xiongjie, Liu Chunsheng, Yu Ke, et al. Toxicological Research on Environmental Endocrine Disruptors[J]. Progress in Chemistry, 2009, 21(2/3): 340-349.
[51] Temple J L, Laing E, Sunder A, et al. Direct action of estradiol on gonadotropin-releasing hormone-1 neuronal activity via a transcriptiondependent mechanism[J]. The Journal of Neuroscience, 2004, 24(28): 6326-6333.
[52] 王新, 谭建华, 赖小平, 等. GnRH脉冲模式对FSH分泌的影响[J]. 中国细胞生物学学报, 2011, 33(3): 275-278. Wang Xin, Tan Jianhua, Lai Xiaoping, et al. The effect of GnRH impulse mode on FSH[J]. Chinese Journal of Cell Biology, 2011, 33(3): 275-278.
[53] Yong E L, Hillier S G, Turner M, et al. Differential regulation of cholesterol side-chain cleavage (P450scc) and aromatase (P450arom) enzyme mRNA expression by gonadotrophins and cyclic AMP in human granulosa cells[J]. Journal of Molecular Endocrinolgy, 1994, 12 (2): 239-249.
[54] Tollefsen K E. Interaction of estrogen mimics, singly and in combination, with plasma sex steroid-binding proteins in rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology, 2002, 56(3): 215-225.
[55] Martin M E, Haourigui M, Pelissero C, et al. Interactions between phytoestrogens and human sex steroid binding protein[J]. Life Sciences, 1996, 58(5): 429-436.
[56] Paterni I, Granchi C, Katzenellenbogen J A, et al. Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential[J]. Steroids, 2014, 90: 13-29.
[57] Björnström L, Sjöberg M. Mechanisms of Estrogen Receptor Signaling: Convergence of Genomic and Nongenomic Actions on Target Genes[J]. Molecular Endocrinology, 2004, 19(4): 833–842.
[58] Attanasio R, Barausse M, Cozzi R. Raloxifene lowers IGF-I levels in acromegalic women[J]. European Journal of Endocrinology, 2003, 148 (4): 443-448.
[59] Decensi A, Robertson C, Ballardini B, et al. Effect of tamoxifen on lipoprotein(a) and Insulin-like GrowthFactor-I(IGF-I) in healthy women[J]. European Journal of Cancer, 1999, 35(4): 596-600.
[60] Hodges-Gallagher L, Valentine C D, El Bader S, et al. Estrogen receptor beta increases the efficacy of antiestrogens by effects on apoptosis and cell cycling in breast cancer cells[J]. Breast Cancer Research and Treatment, 2008, 109(2): 241-250.
[61] Mauvais-Jarvis F. Estrogen and androgen receptors: Regulators of fuel homeostasis and emerging targets for diabetes and obesity[J]. Trends in Endocrinology and Metabolism, 2011, 22(1): 24-33.
[62] Seval Y, Cakmak H, Kayisli U A, et al. Estrogen-Mediated regulation of p38 mitogen-activated protein kinase in human endometrium[J]. The Journal of Clinical Endocrinology and Metabolism, 2006, 91(6): 2349-2357.
[63] Yamakawa K, Arita J. Cross-talk between the estrogen receptor-, protein kinase A-, and mitogen-activated protein kinase-mediated signaling pathways in the regulation of lactotroph proliferation in primary culture[J]. Journal of Steroid Biochemistry and Molecular Biology, 2004, 88(2): 123-130.
[64] Brunnberg S, Pettersson K, Rydin E, et al. The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(11): 6517-6522.
[65] Kobayashi A, Numayama-Tsuruta K, Sogawa K, et al. CBP/p300 Functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt)[J]. Journal of Biochemistry, 1997, 122(4): 703-710.
[66] Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors[J]. Cell, 1996, 85(3): 403-414.
[67] Medlock K L, Lyttle C R, Kelepouris N, et al. Estradiol down-regulation of the rat uterine estrogen receptor[J]. Experimental Biological and Medicine, 1991, 196(3): 293-300.
[68] Ohtake F, Takeyama K, Matsumoto T, et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor[J]. Nature, 2003, 423(6939): 545-550.
[69] Matthews J, Gustafsson J A. Estrogen receptor and aryl hydrocarbon receptor signaling path-ways[J]. Nuclear Receptor Signaling, 2006, 4: e16.
[70] Krishnan V, Porter W, Santostefano M, et al. Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7, 8-tetrachlorodibenzo-p-dioxin(TCDD) in MCF-7 cells[J]. Molecular and Cellar Biology, 1995, 15(12): 6710-6719.
[71] Rogers J M, Denison M S. Analysis of the antiestrogenic activity of 2,3, 7,8-tetrachlorodibenzo-p-dioxin in human ovarian carcinoma BG-1 cells[J]. Molecular Pharmacology, 2002, 61(6): 1393-1403.
[72] Nishino T, Yamanouchi H, Ishibashi K, et al. Antiovulatory effect of a single injection of pure antiestrogen ZK 191703 at early stage of rat estrus cycle[J]. Journal of Steroid Biochemistry and Molecular Bology, 2009, 114(3-5): 152-160.
[73] Krege J H, Hodgin J B, Couse J F, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15677-15682.
[74] Soga T, Dalpatadu S L, Wong D W, et al. Neonatal dexamethasone exposure down-regulates GnRH expression through the GnIH pathway in female mice[J]. Neuroscience, 2012, 218: 56-64.
[75] 堀江典子, 菅美奈子, 金武祚. GABA(γ-氨基丁酸)的功能性[J]. 中国食品添加剂, 2010(6): 169-173. Noriko Horie, Minako Suga, Mujo Kim. Functionality of GABA (γ-Amino Butyric Acid)[J]. China Food Additives, 2010(6): 169-173.
[76] Santos J M, Carlos E M, Brandão M L. Gabaergic mechanisms of hypothalamic nuclei in the expression of conditioned fear[J]. Neurobiology of Learning and Memory, 2008, 90(3): 560-568.
[77] Naftolin F, Horvath T L, Jakab R L, et al. Aromatase immunoreactivity in axon terminals of the vertebrate brain. an immunocytochemical study on quail, rat, monkey, and human tissues[J]. Neuroendocrinology, 1996, 63(2): 149–155.
[78] Balthazart J, Ball G F. Is brain estradiol a hormone or a neurotransmitter[J]. Trends in Neuroscience, 2006, 29(5): 241-249.
[79] Hojo Y, Murakami G, Mukai H, et al. Estrogen synthesis in the brainrole in synaptic plasticity and memory[J]. Molecular and Cell Endocrinology, 2008, 290(1-2): 31-43.
[80] Lebesgue D, Traub M, De Butte-Smith M, et al. Acute administration of non-classical estrogen receptor agonists attenuates ischemiainduced hippocampal neuron loss in middle aged female rats[J]. PLoS One, 2010, 5(1): e8642.
[81] Yang L C, Zhang Q G, Zhou C F, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus[J]. PLoS One, 2010,5(5): e9851.
[82] Liu C, Zhang X, Deng J, et al. Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in Zebrafish[J]. Environmental Science and Technology, 2010, 45(2): 769-775.