针对大气环境内吸气式高超声速飞行器热防护要求,得出前缘、下表面和上表面的热防护结构应分别采用碳/碳(C/C)防热材料、刚性陶瓷防热瓦材料和柔性隔热毡材料。基于Abaqus 分析软件建立以机身为主的热分析有限元模型,计算了高超声速飞行器在典型气动加热载荷情况下的温度场分布和在整个飞行过程中温度的变化情况。通过温度分布得到机身前缘的峰值温度达1637℃,上下表面峰值温度分别为635、805℃,验证了本研究提出的热防护结构形式的有效性。通过温度与时间曲线得出飞行500 s 左右时,飞行器前缘及上下表面温度急剧增加、温度梯度大,500~1500 s 期间持续高温,在1500 s 后温度迅速降低。同时建立了C/C、陶瓷瓦及柔性隔热毡3 种典型耐高温材料的传热模型,对其防热结构的防热效率进行评估,得到其最佳的防热材料厚度为57.6、52.9、53.3 mm,可为防热结构的设计提供参考。
Carbon/carbon (C/C) materials, heat-resistant rigid ceramic tiles and flexible felt were used for the leading edge, lower surface and upper surface of airbreathing hypersonic vehicles to meet thethermal protection requirement. The thermal analysis finite element model of hypersonic vehicles was established using Abaqus. The temperature distribution and the changes during the entire flight of the vehicle under typical aerodynamic heating were calculated. The peak temperature of the leading edge was 1637℃, and the peak temperatures for the upper and lower surfaces were 635 and 805℃, verifying the effectiveness of the proposed thermal protection structure. The temperature- time curve shows that the temperature of the leading edge and upper and lower surfaces increased significantly at 500 s with a largetemperature gradient. From 500 s to 1500 s, the temperature was continuously high. The temperature decreased rapidly after 1500 s. The heat transfer models were built for evaluating the efficiency of the three typical thermal protection structures. The optimum thicknesses for the materials were obtained as 57.6, 52.9, and 53.3 mm, which may provide references for the design of thermal protection systems.
[1] 赵玲. 典型盖板防热结构性能分析与优化设计[D]. 西安: 西北工业大 学, 2007. Zhao Ling. The performance analysis and optimization design of the typical cover thermal protection structure[D]. Xi'an: Northwestern Polytechnical University, 2007.
[2] Blosser M L. Development of metallic thermal protection systems for the reusable launch vehicle[R]. Hampton: National Aeronautics and Space Administration Langley Research Center, 1996.
[3] Burkhard B, Müller M. Technologies for thermal protection systems applied on re-usable launcher[J]. Acta Astronautica, 2004, 55(3-9): 529-536.
[4] 马忠辉. 可重复使用运载器热防护系统性能分析研究[D]. 西安: 西北 工业大学, 2004. Ma Zhonghui. The reusable carrier thermal protection system performance analysis[D]. Xi'an: Northwestern Polytechnical University, 2004.
[5] 杜若, 康宁宁. 陶瓷基复合材料在高超声速飞行器热防护系统中的应 用[J]. 飞航导弹, 2010(2): 80-87. Du Ruo, Kang Ningning. The application of ceramic matrix composites for hypersonic vehicle thermal protection system[J]. Aerodynamic Missile Journal, 2010(2): 80-87.
[6] 苏大亮. 高超声速飞行器热结构设计与分析[D]. 西安: 西北工业大学, 2006. Su Daliang. The Thermal structural design and analysis of hypersonic vehicles[D]. Xi'an: Northwestern Polytechnical University, 2006.
[7] Pichon T. CMC thermal protection system for future reusable launch vehicles: generic shingletechnological maturation and tests[J]. Acta Astronautica, 2009, 65(1-2): 165-176.
[8] 车竞. 高超声速飞行器乘波布局优化设计研究[D]. 西安: 西北工业大 学, 2006. Che Jing. Optimization design of waverider-hypersonic cruise vehicle[D]. Xi'an: Northwestern Polytechnical University, 2006.
[9] 王志经. 吸气式高超声速飞行器设计中的一些概念研究[D]. 南京: 南 京航空航天大学, 2007. Wang Zhijing. The conceptional study for the design of an airbreathing hypersonic vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[10] 陈亚莉. 高超声速飞机对材料的要求[J]. 航空维修与工程, 2004(2): 20-22. Chen Yali. The requirement of materials for hypersonic aircraft[J]. Aviation Maintenance & Engineering, 2004(2): 20-22.
[11] Rivers H K, Glass D E. Advances in hot-structure development[C]. 5th European Workshop, European Space Technonlogy Centre, Noordwijk, The Netherlands, May 17-19, 2006
[12] Blosser M L. Advanced metallic thermal protection systems for reusable launch vechiles[D]. Charlattesville: University of Virginia, 2000.
[13] Glass D E. Ceramic matrix composite thermal protection systems and hot structures for hypersonic vehicles[R]. Dayton: International Space Planes and Hypersonic Systems and Technologies Conference, 2008.
[14] Krenkel W. Carbon fiber reinforced CMC for high-performance structures[J]. Applied Ceramic Technology, 2004, 1(2): 188-200.
[15] 刘斌, 刘刚伟, 徐绯, 等. 高超声速飞行器大面积热防护系统的传热 数值分析[J]. 应用力学学报, 2011, 28(3): 294-300. Liu Bin, Liu Gangwei, Xu Fei, et al. Numerical analysis of thermal protection system heat transfer for hypersonic vehicle[J]. Chinese Journal of Applied Mechanics, 2011, 28(3): 294-300.
[16] 张二亮. 复合材料层合结构减重优化与瞬态传热分析方法[D]. 西 安: 西北工业大学, 2006. Zhang Erliang. Minimum mass design and transient heat transefer analysis of composite strueture with multi-layer[D]. Xi'an: Northwestern Polytechnical University, 2006.
[17] Raffaele S. Aerothermodynamic study of UHTC-based thermal protection systems[J]. Aerospace Science and Technology, 2005(9): 151-160.