为收集和利用密集人群对楼梯的踩踏能量,设计了一种基于低频的新型楼梯压电发电装置,基于RLC 等效内阻建立了该装置的发电电路和数学模型;利用搭建的振动实验平台,对等效电路和数学模型进行实验验证。结果表明,在低频条件下,激励位移越大,频率越小,该压电发电装置输出的电能越大;压电发电单元的实验输出电压为电路中等效电阻Z2的电压,利用数学模型计算得到的理想电压源电压是实验空载电压的2.64~2.88 倍;通过对实验数据的分析计算,得到了与理论计算电压变化规律相一致的实验电压源电压,两者最大误差为7.1%,验证了该压电发电单元等效发电电路和数学模型的正确性。
A new type of cantilever piezoelectric power generation device was designed to collect and use the energy generated by treading of the crowd on the stairs. The electricity generating circuit and mathematical model of the device were established based on resistance RLC. The equivalent circuit and the mathematical model were verified using the vibration experiment platform. The results show that in the condition of low frequency, the output electric power of the device increases with increasing displacement and decreasing frequency. The experimental output voltage of the device is the voltage of the equivalent resistance Z2, and the ideal voltage calculated by the mathematical model was 2.64-2.88 times of the experimental output voltage. By analyzing and calculating the experimental data, the experimental source voltage that is consistent with theoretical calculation was obtained, and the maximum error was 7.1%, verifying the validity of the circuit and mathematical model for the piezoelectric power generation device and providing reference and guidance for its design.
[1] Lee C, Lim Y M, Yang B, et al. Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect[J]. Sensors and Actuators: A, 2009, 156(1): 208-216.
[2] Korla S, Leon R A, Tansel I N. Design and testing of an efficient and compact piezoelectric energy harvest[J]. Microelectronics Journal, 2011, 42(2): 256-270.
[3] Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted[J]. IEEE Micro, 2001, 21(3): 30-42.
[4] 阚君武, 唐可洪, 王淑云, 等. 压电悬臂梁发电装置的建模与仿真分析[J]. 光学精密工程, 2008, 16(1): 71-75. Kan Junwu, Tang Kehong, Wang Shuyun, et al. Modeling and simulation of piezoelectric cantilever generators[J]. Optics and Precision Engineering, 2008, 16(1): 71-75.
[5] Tayahi M B, Johnson B, Holtzman M, et al. Piezoelectric materials for powering remote sensors[J]. Proceedings of the 24th IEEE International Performance, Computing, and Communications Conference, 2005: 383-386.
[6] 尚正国, 温志渝, 贺学锋. 压电振动式发电机微电源智能控制应用电 路的设计[J]. 现代电子技术, 2008(20): 32-38. Shang Zhengguo, Wen Zhiyu, He Xuefeng. Design of the smart control circuit based on vibration-based piezoelectric generator[J]. Modern Electronics Technique, 2008(20): 32-38.
[7] 唐可洪, 阚君武, 任玉, 等. 压电发电装置的功率分析与试验[J]. 吉林 大学学报: 工学版, 2013, 39(6): 1550-1553. Tang Kehong, Kan Junwu, Ren Yu, et al. Power analysis and test of piezoelectric generator[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 39(6): 1550-1553.
[8] 张云电. 夹心式压电换能器及其应用[M]. 北京: 科学出版社, 2006. Zhang Yundian. Sandwich piezoelectric transducer and application[M]. Beijing: Science Press, 2006.
[9] 林书玉. 超声换能器的原理及设计[M]. 北京: 科学出版社, 2003. Lin Shuyu. The principle and design of ultrasonic transducer[M]. Beijing: Science Press, 2003.