综述文章

石墨烯纤维研究进展

  • 史妍 ,
  • 曲良体
展开
  • 1. 南京理工大学科学技术研究院, 南京210094;
    2. 北京理工大学化学学院, 北京100081
史妍,助理研究员,研究方向为科学技术与工程管理,电子信箱:sy_8604@163.com

收稿日期: 2014-09-25

  修回日期: 2014-10-17

  网络出版日期: 2015-03-03

基金资助

国家自然科学基金项目(21325415,21174019)

Recent progress in graphene fibers research

  • SHI Yan ,
  • QU Liangti
Expand
  • 1. Academy of Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. School of Chemistry, Beijing Institute of Technology, Beijing 100081, China

Received date: 2014-09-25

  Revised date: 2014-10-17

  Online published: 2015-03-03

摘要

石墨烯具有独特的电学和力学等性能。宏观的石墨烯纤维由纳米级的石墨烯组装而成,其集成了微观石墨烯的突出性能,因而不仅具有常规纤维的柔韧性可用于纺织物,同时具有轻质、可成型加工及易于功能化等显著优势。概述了石墨烯纤维研究方面的最新进展,包括其可控制备技术、功能化及其在柔性纤维器件如驱动器、机器人、光伏电池、电容器等方面的应用。

关键词: 石墨烯; 纤维; 可控制备

本文引用格式

史妍 , 曲良体 . 石墨烯纤维研究进展[J]. 科技导报, 2015 , 33(3) : 99 -104 . DOI: 10.3981/j.issn.1000-7857.2015.03.017

Abstract

Graphene fiber (GF) integrates the remarkable properties of individual graphene sheets into useful, macroscopic ensemble, which possesses the characteristics such as mechanical flexibility for textiles while maintaining the advantages over conventional carbon fibers such as low cost, light weight, shapeability, and ease of functionalization for various applications. This paper summarizes the significant advances in GFs during recent years, including the tunable and controllable preparation of GFs with functionality and their remarkable applications to unconventional devices, such as flexible fiber-type actuators, robots, motors, photovoltaic cells and supercapacitors.

参考文献

[1] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2006, 6(3): 183-191.
[2] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[3] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[4] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321 (5887): 385-388.
[5] Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[6] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011, 2: 571.
[7] Cong H P, Ren X C, Wang P, et al. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers[J]. Scientific Reports, 2012, 2: 613.
[8] Jalili R, Aboutalebi S H, Esrafilzadeh D, et al. Scalable one-step wetspinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 23(43): 5345-5354.
[9] Chen L, He Y L, Chai S G, et al. Toward high performance graphene fibers[J]. Nanoscale, 2013, 5(13): 5809-5815.
[10] Xiang C S, Young C C, Wang X, et al. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers[J]. Advanced Materials, 2013, 25 (33): 4592-4597.
[11] Zhao Y, Jiang C C, Hu C G, et al. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers[J]. ACS Nano, 2013, 7(3): 2406-2412.
[12] Dong Z L, Jiang C C, Cheng H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861.
[13] Hu C G, Zhao Y, Cheng H H, et al. Graphene microtubings: Controlled fabrication and site-specific functionalization[J]. Nano Letters, 2012, 12(11): 5879-5884.
[14] Li X M, Zhao T S, Wang K L, et al. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties[J]. The Langmuir, 2011, 27(19): 12164-12171.
[15] Li X, Sun P Z, Fan L L, et al. Multifunctional graphene woven fabrics [J]. Scientific Reports, 2012, 2: 395.
[16] Hu C G, Zhai X Q, Liu L L, et al. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates[J]. Scientific Reports, 2013, 3: 2065.
[17] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene[J]. Nature, 2009, 458 (7240): 872-876.
[18] Carretero-Gonzalez J, Castillo-Martinez E, Dias-Lima M, et al. Oriented graphene nanoribbon yarn and sheet from aligned multiwalled carbon nanotube sheets[J]. Advanced Materials, 2012, 24(42): 5695-5701.
[19] Xiang C S, Behabtu N, Liu Y D, et al. Graphene nanoribbons as an advanced precursor for making carbon fiber[J]. ACS Nano, 2013, 7(2): 1628-1637.
[20] Jang E Y, Carretero-Gonzalez J, Choi A, et al. Fibers of reduced graphene oxide nanoribbons [J]. Nanotechnology, 2012, 23(23): 235601.
[21] Tian Z S, Xu C X, Li J T, et al. Self-assembled free-standing graphene oxide fibers[J]. ACS Applied Materials and Interfaces, 2013, 5(4): 1489-1493.
[22] Xu Z, Liu Z, Sun H Y, et al. Highly electrically conductive ag-doped graphene fibers as stretchable conductors[J]. Advanced Materials, 2013, 25(23): 3249-3253.
[23] Xu Z, Sun H Y, Zhao X L, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2): 188-193.
[24] Hu X Z, Xu Z, Gao C. Multifunctional, supramolecular, continuous artificial nacre fibres[J]. Scientific Reports, 2012, 2: 767.
[25] Hu X Z, Xu Z, Liu Z, et al. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites[J]. Scientific Reports, 2013, 3: 2374.
[26] Zhao X L, Xu Z, Zheng B N, et al. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide[J]. Scientific Reports, 2013, 3: 3164.
[27] Zhong X H, Wang R, Wen Y Y, et al. Carbon nanotube and graphene multiple-thread yarns [J]. Nanoscale, 2013, 5(3): 1183-1187.
[28] Cheng H H, Dong Z L, Hu C G, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434.
[29] Meng Y N, Zhao Y, Hu C G, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles[J]. Advanced Materials, 2013, 25(16): 2326-2331.
[30] Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications, 2012, 3: 650.
[31] Matsumoto H, Imaizumi S, Konosu Y, et al. Electrospun composite nanofiber yarns containing oriented graphene nanoribbons[J]. ACS Applied Materials and Interfaces, 2013, 5(13): 6225-6231.
[32] Wang C, Li Y D, Ding G Q, et al. Preparation and characterization of graphene oxide/poly (vinyl alcohol) composite nanofibers via electrospinning[J]. Journal of Applied Polymer Science, 2013, 127(4): 3026-3032.
[33] Bao Q L, Zhang H, Yang J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791.
[34] Jiang Z X, Li Q, Chen M L, et al. Mechanical reinforcement fibers produced by gel–spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites[J]. Nanoscale, 2013, 5(14): 6265-6269.
[35] Zhang J, Zhao F, Zhang Z P, et al. Dimension-tailored functional graphene structures for energy conversion and storage[J]. Nanoscale, 2013, 5(8): 3112-3126.
[36] Lu L H, Liu J H, Hu Y, et al. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design[J]. Advanced Materials, 2013, 25(9): 1270-1274.
[37] Liang J J, Huang L, Li N, et al. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene[J]. ACS Nano, 2012, 6(5): 450-4509.
[38] Wang Y H, Bian K, Hu C G, et al. Flexible and wearable graphene/ polypyrrole fibers towards multifunctional actuator applications[J]. Electrochemical Communications, 2013, 35: 49-52.
[39] Cheng H H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition, 2013, 52(40): 10482-10486.
[40] Cheng H H, Hu Y, Zhao F, et al. Moisture-activated torsional graphene-fiber motor[J]. Advanced Materials, 2014, 26(18): 2909-2913.
[41] Yang Z B, Sun H, Chen T, et al. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency[J]. Angewandte Chemie International Edition, 2013, 52(29): 7545-7548.
[42] Kou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics [J]. Nature Communications, 2014, 5: 3754.
[43] Chen J M, Zou J, Zeng J B, et al. Preparation and evaluation of graphene-coated solid-phase microextraction fiber[J]. Analytica Chimica Acta, 2010, 678(1): 44-49.
[44] Luo Y B, Yuan B F, Yu Q W, et al. Substrateless graphene fiber: A sorbent for solid-phase microextraction[J]. Journal of Chromatography A, 2012, 1268: 9-15.
[45] Fan J, Dong Z L, Qi M L, et al. Monolithic graphene fibers for solidphase microextraction [J]. Journal of Chromatography A, 2013, 1320: 27-32.
文章导航

/