针对高尚堡油田沙河街组在薄互层的压裂过程中,裂缝极易穿透产层窜通水层的问题,利用多因素正交表对该区块裂缝高度影响因素进行权重分析。结果表明,该区域裂缝高度影响参数按强弱排序为:地应力差、施工规模、施工排量、压裂液黏度。为了防止窜通水层,在施工中采用线性胶和冻胶交替泵注、变排量、段塞式加砂技术改变地应力的方式进行裂缝高度控制。压后通过净压力拟合、返排液矿化度分析,显示裂缝高度得到较好控制,未能沟通水层。
Due to the characteristics of thin interbeded layer of the third member of Shahejie formation in Gaoshangpu Oilfield, fracture can easily propagate into water layer. This paper uses multi-factor orthogonal table to conduct a weight analysis about the fracture height impact factor in this area. The results show that the fracture height impact factor in this area follows the pecking order: geostress difference, fluid volume, rate and viscosity. Therefore, to control the fracture height, linear gel and cross-linked gel alternating injection, variable rate and plug sand injection technologies are used to alter the stress between sand and shale layers. Through the net pressure analysis and analysis of fracturing flowback fluid salinity, it is shown that fracture height has been well controlled and the fracture fails to channel the water layer.
[1] 苟贵明, 胡仁权. 缝高控制与薄层压裂[J]. 油气井测试, 2004, 13(5): 48-51. Gou Guiming, Hu Renquan. Controlling gap height and fracture to thin layer [J]. Well Testing, 2004, 13(5): 48-51.
[2] 胡永全, 任书泉. 水力压裂裂缝高度控制分析[J]. 大庆石油地质与开 发, 1996, 15(2): 55-58. Hu Yongquan, Ren Shuquan. A control analysis of fracture height in hydraulic fracturing[J]. Petroleum Geology & Oilfield Development in Daqing, 1996, 15(2): 55-58.
[3] 王永辉, 张福祥. 水力压裂裂缝高度的控制技术及其成功应用[J]. 油 气井测试, 2006, 15(4): 56-57. Wang Yonghui, Zhang Fuxiang. Technology of controlling crack height by hydraulic fracturing and its application[J] Well Testing, 2006, 15 (4): 56-57.
[4] 胡阳明, 胡永全, 赵金洲, 等. 裂缝高度影响因素分析及控缝高对策技 术研究[J]. 重庆科技学院学报: 自然科学版, 2009, 11(1): 28-31. Hu Yangming, Hu Yongquan, Zhao Jinzhou, et al. Analysis of fracture height influence factors and study of height control gaming techniques [J]. Journal of Chongqing University of Science and Technology: Natural Sciences Edition, 2009, 11(1): 28-31.
[5] 宋中华, 张士诚, 沈建新,等. 新型上浮转向剂在塔里木油田的应用 [J]. 钻采工艺, 2014, 37(3): 88-91. Song Zhonghua, Zhang Shicheng, Shen Jianxin, et al. Application of the new floatation and diversion agent in Tarim Oilfield[J]. Drilling & Production Technology, 2014, 37(3): 88-91.
[6] Garcia D G, Prioletta A, Kruse G F. Effective control of vertical fracture growth by placement of an artificial barrier (bottom screen out) in an exploratory well[C]. SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, March 25-28, 2001.
[7] 王友净, 宋新民, 顾斐, 等. 高尚堡深层北区沙三段二、三亚段沉积特 征与砂体结构[J]. 油气地质与采收率, 2010, 17(2), 14-16. Wang Youjing, Song Xinmin,Gu Fei, et al. Sedimentary character and sand body structure in second and third sub-formation of Sha3 Formation north deep reservoir of Gaoshangpu Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(2): 14-16.
[8] 王瀚, 刘合, 张劲, 等. 水力裂缝的缝高控制参数影响数值模拟研究 [J]. 中国科学技术大学学报, 2011, 41(9): 820-825. Wang Han, Liu He, Zhang Jin, et al. Numerical simulation of hydraulic fracture height control with different parameters[J]. Journal of University of Science and Technology of China, 2011, 41(9): 820-825.
[9] 李年银, 赵立强, 张倩, 等. 裂缝高度延伸诊断与控制技术[J]. 大庆石 油地质与开发, 2008, 27(5): 81-84. Li Nianyin, Zhao Liqiang, Zhang Qian, et al. Diagnosis method of artificial fracture vertical extension and the control technique of fracture height in fracturing or acid fracturing[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(5): 81-84.