专题论文

藏北南部介形类分布与环境因子的典范对应分析

  • 宋高 ,
  • 王海雷 ,
  • 郑绵平
展开
  • 中国地质科学院矿产资源研究所, 国土资源部盐湖资源与环境重点实验室, 北京 100037
宋高,博士研究生,研究方向为第四纪地质与全球气候环境变化,电子信箱:songgao1985128@126.com

收稿日期: 2014-09-16

  修回日期: 2014-11-05

  网络出版日期: 2014-12-25

基金资助

国家自然科学基金面上项目(41372179);国土资源部公益性行业科研专项(201311140);中国地质调查局地质调查项目(12120114048501)

Canonical Correspondence Analysis for Distribution of Extant Ostracodes and Environmental Factors in the South of Northern Tibet

  • SONG Gao ,
  • WANG Hailei ,
  • ZHENG Mianping
Expand
  • MLR Key Laboratory of Saline Lake Resources and Environments; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2014-09-16

  Revised date: 2014-11-05

  Online published: 2014-12-25

摘要

典范对应分析是一种直观反映动物群落、属种分布与环境因子间关系的直接排序方法,已在生物界及生态环境研究方面得到广泛应用.为调查西藏地区介形类与环境因子间的关系,2012 年对藏北南部49 个不同水体表层沉积物中的介形类进行调查研究,获得介形类10 属22 种,其中Limnocythere dubiosa、Ilyocypris bradyiCandona candida 在49 个样点中出现频数分别达19 次、13 次和9 次,是藏北南部地区的常见种.介形类的生存环境同其水体的物化性质(pH 值、电导率及组分等)有重要关系,应用典范对应分析,对藏北南部地区49 个样点的22 种介形类与8 个环境因子的相关性进行研究,得出介形类分布与8 个环境因子间的相关性均在80%以上,表明该地区不同水体环境因子的变化对介形类分布的影响很大,水体的8 个环境因子中对介形类分布影响最大的是电导率、pH 值及亚硝酸盐含量.从物种分布看,Eucypris rischtanica、Leucocythere dilitata、Cypricercus moguntiensisLimnocytherellina kunlunensis 4 个种对环境的适应性相对较强.Leucocythere postericosta、Limnocytherellina bispinosaCandona houae 3 个种与电导率和亚硝酸盐含量明显正相关,且相关性较大,它们的高频度出现指示水体电导率及亚硝酸盐含量较高;在藏北南部地区的常见属种中,Limnocythere dubiosa 的分布与pH 值明显正相关,是水体高pH 值良好的指示生物,而Ilyocypris bradyiCandona candida 则对水体低电导率有着良好的指示作用.

本文引用格式

宋高 , 王海雷 , 郑绵平 . 藏北南部介形类分布与环境因子的典范对应分析[J]. 科技导报, 2014 , 32(35) : 22 -28 . DOI: 10.3981/j.issn.1000-7857.2014.35.002

Abstract

Canonical correspondence analysis (CCA) is a direct sequencing method which can reflect the relationship among communities, distributions of species and environment factors in a simple way, and be used to study the relationship between the biology distribution and the environment factors effectively. It has been used in the biology and the ecological environment widely. In this paper, 49 surface sediment samples are collected to study the ecological distribution of extant ostracodes and their environmental implications for water bodies in south of northern Tibet in 2012. Total of 10 genera and extant ostracodes of 22 species are identified, among which, Limnocythere dubiosa, Ilyocypris bradyi and Candona candida are the common species with high occurrence frequency of 19, 13 and 9, respectively in Ali and Naqu regions, Tibet. CCA reveals a correlation coefficient of more than 80% between the extant ostracodes distribution and the eight environmental factors, suggesting that the distribution of many species is highly related to environmental changes. Among eight environmental factors, the conductivity, the pH value and the nitrite content are the most affective variables on the species occurrence. Eucypris rischtanica, Leucocythere dilitata, Cypricercus moguntiensis and Limnocytherellina kunlunensis have relatively strong adaptability to the water environment. The high occurrence frequency of Leucocythere postericosta, Limnocytherellina bispinosa and Candona houae corresponds to a high water conductivity and nitrite content, as the distribution of these species positively correlates with the water conductivity and the nitrite content, suggesting that the three species are good indicators for the water conductivity and the nitrite content. On the other hand, Ilyocypris bradyi and Candona candida are good indicators for the low conductivity. As for Limnocythere dubiosa, the most frequently occurred ostracode in Ali and Naqu regions, is a good indicator for the high pH value.

参考文献

[1] 秦大河. 青藏高原的冰川与生态环境[M]. 北京: 中国藏学出版社, 1999: 78-102. Qin Dahe. The glaciers and ecological environment of Tibetan Plateau[M]. Beijing: China Tibetology Press, 1999: 78-102.
[2] Chen Y, Chen P, Ge Q, et al. Global change research progress and prospect[J]. Earth Science Frontiers, 2002, 9(1): 11-18.
[3] 郑度, 丁林, 朱立平. 青藏高原形成环境与发展[M]. 石家庄: 河北科学 技术出版社, 2003: 79-114. Zheng Du, Ding Lin, Zhu Liping. The formation and evolution of the Tibetan Plateau[M]. Shijiazhuang: Hebei Science and Technology Press, 2003: 79-114.
[4] 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464. Yao Tandong, Zhu Liping. The response of environmental changes on Tibetan Plateau to global changes and adapation strategy[J]. Advances in Earth Science, 2006, 21(5): 459-464.
[5] 潘红玺, 王苏民. 中国湖泊矿化度的空间分布[J]. 海洋与湖沼, 2001, 32(2): 185-191. Pan Hongxi Wang Sumin. Spatial distribution of mineralized degree of lakes in China[J]. Oceanologia Et Limnologia Sinica, 2001, 32(2): 185- 191.
[6] Whatley R. Population structure of ostracods: some general principles for recognition of palaeoenvironments[C]//De Deckker P, Colin J P, Peypouquet J P. Ostracoda in the Earth Sciences. Amsterdam: Elserier, 1988: 245-256.
[7] Mezquita F, Tapia G, Roca J R. Ostracoda from springs on the eastern Iberian Peninsula: Ecology, biogeography and palaeolimnological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148: 65-85.
[8] Kulköylüoglu O. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey[J]. Ecological Indicators, 2004, 4: 139-147.
[9] Kulköylüoglu O. Ecology and phenology of freshwater ostracods in Lake Glky (Bolu, Turkey)[J]. Aquantic Ecology, 2005, 39: 295-304.
[10] 禹娜, 陈立侨, 赵泉鸿. 太湖介形虫分布与水环境因子间关系的典范 对应分析[J]. 微体古生物学报, 2007, 24(1): 53-60. Yu Na, Chen Liqiao, Zhao Quanhong. CCA of ostracod distribution and environmental factors in the Taihu lake[J]. Acta Micropalaeontologica Sinica, 2007, 24(1): 53-60.
[11] Ruiz F, Abad M, Olias M, et al. The present environmental scenario of the Nador Lagoon (Morocco) [J]. Environmental Research, 2006, 102: 215-229.
[12] 张玲, 孙镇城, 安芷生, 等. 青海湖区不同水体介形类分布特征的初 步研究[J]. 微体古生物学报, 2006, 23(4): 425-436. Zhang Ling, Sun Zhencheng, An Zhisheng et al. A preliminary distribution analysis on ostracoda of different wwater bodies from Qinghai lake area, NW China[J]. Micropalaeontologica Sinica, 2006, 23 (4): 425-436.
[13] 孔嫱, 禹娜, 赵泉鸿. 贵州省红枫湖现生介形类新纪录[J]. 微体古生 物学报, 2013, 30(2): 166-174. Kong Qiang, Yu Na, Zhao Quanhong. New record of freshwater ostracods from the Hongfeng lake, Guizhou Province[J]. Micropalaeontologica Sinica, 2013, 30(2): 166-174.
[14] 杨留法, 黄宝仁. 云南抚仙湖表层沉积物中的介形类及其分布规律 的初步研究[J]. 科学通报, 1983, 28(10): 617-621. Yang Liufa, Huang Baoren. Ostracod and regularities of distribution in surface deposits in Fuxian lake in Yunnan[J]. Chinese Science Bulletin, 1983, 28(10): 617-621.
[15] 禹娜, 赵泉鸿, 成鑫荣. 云南滇池淡水介形类新纪录[J]. 微体古生物 学报, 2010, 27(4): 344-350. Yu Na, Zhao Quanhong, Cheng Xinrong. New record of freshwater ostracods from Dianchi lake, Yunnan Province[J]. Micropalaeontologica Sinica, 2010, 27(4): 344-350.
[16] 杨藩, 乔子真, 张海泉, 等. 柴达木盆地新生代介形类动物群特征及 环境意义[J]. 古地理学报, 2006, 8(2): 143-156. Yang Fan, Qiao Zizhen, Zhang Haiquan, et al. Features of the Cenozoic ostracod fauna and environmental significance in Qaidam Basin[J]. Journal of Palaeogeography, 2006, 8(2): 143-156.
[17] 黄宝仁,杨留法,范云琦. 西藏现代湖泊表层沉积物中的介形类[J]. 微体古生物学报, 1985, 2(4): 376-396. Huang Baoren, Yang Liufa, Fan Yunqi. Ostracodes from surface deposits of recent lakes in Tibet[J]. Acta Micropalaeontologica Sinica, 1985, 2(4): 376-396.
[18] Mischke S, Herzschuh U, Massmann G. An ostracod- conductivity transfer function for Tibetan lakes[J]. Journal of Paleolimnology, 2007, 38: 509-524.
[19] Mischke S, Böβneck U, Diekmann B. Quantitative relationship between water- depth and sub- fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China[J]. Journal of Paleolimnology, 2010, 43: 589-608.
[20] 刘俊英, 王海雷, 袁鹤然. 西藏色卡执湖区更新世晚期以来微体古生 物记录的气候演变[J]. 地质学报, 2010, 84(11): 1668-1679. Liu Junying, Wang Hailei, Yuan Heran. Climatic evolution since the Late Pleistocene in the S Kazhig lake area, Tibet, based on microfossil records[J]. Acta Geologica Sinica, 2010, 84(11): 1668-1679.
[21] 杨留法, 范云崎, 黄宝仁. 西藏高原现代湖泊沉积物中的介形类化石 及其与湖水矿化度间关系的初步研究[J]. 海洋湖沼通报, 1982, 1: 20-28. Yang Liufa, Fan Yunqi, Huang Baoren. Relation between ostracode distribution in surface deposits and water salt of recent lakes in Xizang Platean[J]. Transactions of Oceanology and Limnology, 1982, 1: 20-28.
[22] 赵宇虹. 不同pH值水溶液对现生介形类壳体保存的影响[J]. 微体古 生物学报, 1990, 7(1): 1-8. Zhao Yuhong. Preliminary studies on effects of different pH values on carapaces of living ostracods[J]. Micropalaeontologica Sinica, 1990, 7 (1): 1-8.
[23] Whatley R C, Wall D R. A preliminary account of the ecology and distribution of recent ostracoda in the Southern Irish Sea[C]//The Taxonomy, Morphology and Ecology of Recent Ostracoda. Edinburgh: Oliver & Boyd Press, 1988, 268-298.
[24] Klassen R W, Delorme L D. Geology and paleontology of Pleistocene deposits in Southwestern Manitoba[J]. Canadian Journal of Earth Sciences, 1967, 4: 433-447.
[25] Delorme L D. Ostracods as Quaternary paleoecological indicators[J]. Canadian Journal of Earth Sciences, 1969, 6: 1471-1476.
[26] 刘俊英, 郑绵平, 王海雷. 古昆仑湖地区183—90 kaBP间的微体古 生物与环境变迁[J]. 湖泊科学, 2010, 22(5): 739-748. Liu Junying, Zheng Mianping, Wang Hailei. Microfossils and environmental change in Paleo- Kunlun lake area during 183—90 kaBP[J]. Journal of Lake Sciences, 2010, 22(5): 739-748.
文章导航

/