[1] Zheng M P. On salinology[J]. Hydrobiologia, 2001, 466(1-3): 339-347.
[2] 郑绵平. 盐湖学的研究与展望[J]. 地质论评, 2006, 52(6): 737-746. Zheng Mianping, Salinology: Research and prospects[J]. Geological Review, 2006, 52(6): 737-746.
[3] 郑绵平. 盐类科学研究的扩展——盐体系研究的思考(代序)[J]. 地质 学报, 2007, 81(12) 1603-1607. Zheng Mianping. Expansion of Salt Science-Thoughts on saline systems research (in lieu of preface) [J]. Acta Geologica Sinica, 2007, 81(12): 1603-1607.
[4] 郑绵平. 盐类科学研究的扩展[J]. 科技导报, 2013, 31(4): 8. Zheng Mianping. Expansion of salt science[J]. Science & Technology Review, 2013, 31(4): 8.
[5] Zheng M P, Kong W G, Zhang X F, et al. A comparative analysis of evaporate sediments on Earth and Mars: Implications for the climate change on Mars[J]. Acta Geologica Sinica, 2013, 87(3): 885-897.
[6] Ley W, Vonbraun W. The exploration of Mars[M]. New York: Viking Press, 1956.
[7] Bibring J P, Langevin Y, Gendrin A, et al. Mars surface diversity as revealed by the OMEGA/Mars express observations[J]. Science, 2005, 307(5715): 1576-1581.
[8] McCord T B, Hansen G B, Fanale F P, et al. Salts on Europa's surface detected by Galileo's Near Infrared Mapping Spectrometer [J]. Science, 1998, 280(5367): 1242-1245.
[9] Postberg F, Kempf S, Schmidt J, et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus[J]. Nature, 2009, 459 (7250): 1098-1101.
[10] Khurana K K, Kivelson M G, Stevenson D J, et al. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto[J]. Nature, 1998, 395(6704): 777-780.
[11] Kivelson M G, Khurana K K, Stevenson D J, et al. Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment
[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A3): 4609-4625.
[12] Kivelson M G, Khurana K K, Russell C T, et al. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa[J]. Science, 2000, 289(5483): 1340-1343.
[13] Kivelson M G, Khurana K K, and Volwerk M. The permanent and inductive magnetic moments of ganymede[J]. Icarus, 2002, 157(2): 507- 522.
[14] Langevin Y, Poulet F, Bibring J P, et al. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express[J]. Science, 2005, 307 (5715): 1584-1586.
[15] Gendrin A, Mangold N, Bibring J P, et al. Sulfates in Martian layered terrains: The OMEGA/Mars Express view[J]. Science, 2005, 307(5715): 1587-1591.
[16] Osterloo M M, Hamilton V E, Bandfield J L, et al. Chloride-bearing materials in the southern highlands of Mars[J]. Science, 2008, 319 (5870): 1651-1654.
[17] Osterloo M M, Anderson F S, Hamilton V E, et al. Geologic context of proposed chloride-bearing materials on Mars[J]. Journal of Geophysical Research, 2010, 115: E10012.
[18] Hecht M H, Kounaves S P, Quinn R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site[J]. Science, 2009, 325(5936): 64-67.
[19] Chevrier V F, and Rivera-Valentin E G. Formation of recurring slope lineae by liquid brines on present-day Mars[J]. Geophysical Research Letters, 2012, 39: L21202.
[20] Greeley R, Chyba C F, Head III J W, et al. Geology of Europa[M]// Bagenal F, Dowling T E, Mckinnon W B. Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge: Cambridge University Press, 2007: 329-363.
[21] McCord T B, Hansen G B, Matson D L, et al. Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation[J]. Journal of Geophysical Research: Planets, 1999, 104(E5): 11827-11851.
[22] McCord T B, Orlando T M, Teeter G, et al. Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions[J]. Journal of Geophysical Research: Planets, 2001, 106(E2): 3311-3319.
[23] Schubert G, Anderson J D, Travis B J, et al. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating
[J]. Icarus, 2007, 188(2): 345-355.
[24] Kempf S, Beckmann U, Moragas-Klostermeyer G, et al. The E ring in the vicinity of Enceladus: I. Spatial distribution and properties of the ring particles[J]. Icarus, 2008, 193(2): 420-437.
[25] Schmidt J, Brilliantov N, Spahn F, et al. Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures[J]. Nature, 451(7179): 685-688.
[26] Postberg F, Schmidt J, Hillier J, et al. A salt- water reservoir as the source of a compositionally stratified plume on Enceladus[J]. Nature, 2011, 474(7353): 620-622.
[27] Kempf S, Beckmann U, Schmidt J. How the Enceladus dust plume feeds Saturn’s Ering [J]. Icarus, 206(2): 446-457.
[28] Lichtenberg K A, Arvidson R E, Morris R V, et al. Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars[J]. Journal of Geophysical Research: Planets, 2010, 115: E00D17.
[29] Arvidson R E, Poulet F, Bibring J- P, et al. Spectral reflectance and morphologic correlations in Eastern Terra Meridiani, Mars[J]. Science, 2005, 307(5715): 1591-1594.
[30] Ehlmann B L, Mustard J F, Murchie S L, et al. Orbital identification of carbonate-bearing rocks on Mars [J]. Science, 2008, 322(5909): 1828- 1832.
[31] Klingelhöfer G, Morris R V, Bernhardt B, et al. Jarosite and hematite at meridiani planum from opportunity's mössbauer spectrometer[J]. Science, 2004, 306(5702): 1740-1745.
[32] Kong W G, Wang A, Freeman J J, et al. A comprehensive spectroscopic study of synthetic Fe2+ , Fe3+ , Mg2+ and Al3+ copiapite by Raman, XRD, LIBS, MIR and vis-NIR [J]. Journal of Raman Spectroscopy, 2011, 42 (5): 1120-1129.
[33] Bishop J L, Murad E, Lane M D, et al. Multiple techniques for mineral identification on Mars: A study of hydrothermal rocks as potential analogues for astrobiology sites on Mars[J]. Icarus, 2004, 169(2): 311- 323.
[34] Zheng M P, Wang A, Kong F J, et al. Saline lakes on Qinghai-Tibet Plateau and salts on Mars[C]. Lunar and Planetary Science Conference XL, Houston, USA: LPI, 2009: 1454.
[35] Chou I M, Seal R R. Magnesium and calcium sulfate stabilities and the water budget of Mars[J]. Journal of Geophysical Research: Planets, 2007, 112: E11004.
[36] Wang A, Freeman J J, Jolliff B L. Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50℃ to 5℃: Implication for sulfates on Mars[J]. Journal of Geophysical Research: Planets, 2009, 114: E04010.
[37] Kong W G, Wang A, and Chou I M. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa [J]. Chemical Geology, 2011, 284(3): 333-338.
[38] Zolotov M Y, and Shock E L. Composition and stability of salts on the surface of Europa and their oceanic origin[J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32815–32827.
[39] 刘喜方, 郑绵平. 西藏聂尔错镁硼矿地质特征及成矿机制[J]. 地质学 报, 2010, 84(11): 1601-1612. Liu Xifang, Zheng Mianping. Geological features and metallogenicmechanism of the Nier Co magnesium borate deposit, Tibet [J]. ActaGeologicaSinica, 2010, 84(11):1601-1612.
[40] Böhlke J K, Ericksen G E, Revesz K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A[J]. Chemical Geology, 1997, 136: 135-152.
[41] Michalski G, Böhlke J K, Thiemens M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions[J]. Geochimicaet Cosmochimica Acta, 2004, 68: 4023-4038.
[42] 郑绵平, 赵元艺, 刘俊英. 第四纪盐湖沉积与古气候[J]. 第四纪研究, 1998(4): 297-307. Zheng Mianping, Zhao Yuanyi, Liu Junying. Quaternary saline lake deposition and palaeoclimate[J]. Quaternary Research, 1998(4): 297- 307.
[43] Zheng M P, Zhao Y Y, Liu J Y. Paleoclimatic indicators of China's Quaternary Saline Lake sediments and Hydrochemistry[J]. Acta Geologica Sinica, 2000, 74(2): 259-265.
[44] Murchie S L, Mustard J F, Ehlmann B L, et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter [J]. Journal of Geophysical Research: Planets, 2009, 114: E00D06.
[45] Kong W G, Zheng M P, Kong F J, et al. Sulfate-bearing deposits at Dalangtan Playa and their implication for the formation and preservation of Martian salts[J]. American Mineralogist, 2014, 99(2/3): 283-290.
[46] Catling D C, Claire M W, Zahnle K J, et al. Atmospheric origins of perchlorate on Mars and in the Atacama[J]. Journal of Geophysical Research: Planets, 2010, 115: E00E11.
[47] Zahnle K, Haberle R M, Catling D C, et al. Photochemical instability of the ancient Martian atmosphere[J]. Journal of Geophysical Research: Planets, 2008, 113: E11004.
[48] Scambelluri M, Philippot P. Deep fluids in subduction zones[J]. Lithos, 2001, 55(1): 213-227.
[49] Bodnar R J. Fluids in planetary systems[J]. Elements, 2005, 1(1): 9-12.
[50] Kesler S E. Ore-forming fluids [J]. Elements, 2005, 1(1): 13-18.
[51] Valenti P, Bodnar R J, Schmidt C. Experimental determination of H2O– NaCl liquidi to 25 mass% NaCl and 1.4 GPa: Application to the Jovian satellite Europa[J]. Geochimica Et Cosmochimica Acta, 2012, 92: 117- 128.
[52] Joliff B L, Wieczorek M A, Shearer C K, et al. New Views of the Moon: Reviews in Mineralogy and Geochemistry, Vol. 60[M]. Chantilly, Virginia: The Mineralogical Society of America, 2006.
[53] Tosca N J, McLennan S M, Clark B C, et al. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum[J]. Earth and Planetary Science Letters, 2005, 240(1): 122-148.
[54] Bao H, Campbell D A, Bockheim J G, et al. Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions
[J]. Nature, 2000, 407(6803): 499-502.
[55] Bishop J L, Lougear A, Newton J, et al. Mineralogical and geochemical analyses of Antarctic lake sediments: A study of reflectance and Mössbauer spectroscopy and C, N, and S isotopes with applications for remote sensing on Mars[J]. Geochimicaet Cosmochimica Acta, 2001, 65 (17): 2875-2897.
[56] Doran P T, Wharton R A, Des Marais D J, et al. Antarctic paleolake sediments and the search for extinct life on Mars [J]. Journal of Geophysical Research: Planets, 1998, 103(E12): 28481-28493.
[57] Gibson E K, Wentworth S J, and McKay D S. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: An analog of Martian weathering processes[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(S2): A912-A928.
[58] Edwards H G M, Moody C D, Jorge Villar S E. et al. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: Evaluation for Mars Lander missions [J]. Icarus, 2005, 174(2): 560-571.
[59] Wentworth S J, Gibson E K, Velbel M A, et al. Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars [J]. Icarus, 2005, 174(2): 383-395.
[60] Marchant D R, and Head III J W. Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars [J]. Icarus, 2007, 192(1): 187-222.
[61] Catling D C, Claire M W, Zahnle K J. et al. Atmospheric origins of perchlorate on Mars and in the Atacama[J]. Journal of Geophysical Research: Planets, 2010, 115: E00E11.
[62] McKay C P, Friedmann I, Go′ mez- Silva B. et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: Four years of observation including the El Niño of 1997-1998[J]. Astrobiology, 2003, 3(2): 393-406.
[63] Wierzchos J, Ascaso C, McKay C P. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 2006, 6(3): 415-422.
[64] Quinn R C, Zent A P, Grunthaner F J. et al. Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument [J]. Planetary and Space Science, 2005, 53(13): 1376-1388.
[65] Mann G A, Clarke J D A, Gostin V A. Surveying for Mars analogue research sites in the central australian deserts[J]. Australian Geographical Studies, 2004, 42(1): 116-124.
[66] West M D, Clarke J D A, Thomas M. et al. The geology of Australian Mars analogue sites[J]. Planetary and Space Science, 2010, 58(4): 447- 458.
[67] Benison K C. A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits[J]. Geology, 2006, 34(5): 385- 388.
[68] Chan M A, Beitler B, Parry W T, et al. A possible terrestrial analogue for haematite concretions on Mars[J]. Nature, 2004, 429(6993): 731-734.
[69] Fernández-Remolar D C, Morris R V, Gruener J E, et al. The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at MeridianiPlanum, Mars [J]. Earth and Planetary Science Letters, 2005, 240(1): 149-167.
[70] Léveillé R. A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars [J]. Planetary and Space Science, 2010, 58(4): 631-638.
[71] Preston L J, Dartnell L R. Planetary habitability: lessons learned from terrestrial analogues[J]. International Journal of Astrobiology, 13(1): 81- 98.
[72] Kong F J, Kong W G, Hu B. et al. Meteorological data, surface temperature and moisture conditions at the Dalangtan Mars analogous site, in Qinghai-Tibet Plateau, China[C]//Lunar and Planetary Science Conference XLIV. Houston: LPI, 2013:1336.
[73] Kong W G, Zheng M P, Kong F J. Brine Evolution in Qaidam Basin, Northern Tibetan Plateau, and the Formation of Playas as Mars Analogue Site [C]//Lunar and Planetary Science Conference XLV, Houston, USA: LPI, 2014: 1228.
[74] 孔凡晶, 马妮娜, Wang A, 等. 大浪滩盐湖蒸发盐嗜盐菌培养鉴定及 其天体生物学意义[J]. 地质学报, 84(11): 1661-1667. Kong Fanjing, Ma Nina, Wang A, et al. Isolation and Identification of Halophiles from Evaporates in Dalangtan Salt Lake[J]. Acta Geologica Sinica, 2007, 84(11): 1661-1667.
[75] Mayer D P, Arvidson R E, Wang A. et al. Mapping minerals at a potential mars analog site on the Tibetan plateau[C]//Lunar and Planetary Science Conference XL, Houston: LPI, 2009: 1877.
[76] Sobron P, Freeman J J, Wang A. Field test of the water-wheel IR (WIR) spectrometer on evaporative salt deposits at Tibetan plateau[C]//Lunar and Planetary Science Conference XL. Houston: LPI, 2009: 2372.