研究论文

微圆管中流体的微观流动机制

  • 朱维耀 ,
  • 田英爱 ,
  • 于明旭 ,
  • 韩宏彦 ,
  • 张雪龄
展开
  • 北京科技大学土木与环境工程学院, 北京100083
朱维耀,教授,研究方向为渗流力学、流体力学、油气田开发,电子信箱:weiyaook@sina.com

收稿日期: 2014-06-10

  修回日期: 2014-07-02

  网络出版日期: 2014-09-30

基金资助

国家科技重大专项(2011ZX05051);国家重点基础研究发展计划(973计划)项目(2013CB228002);教育部专项(FRF-MP-B12006B)

Mechanism of Microscopic Fluid Flow in Microtubes

  • ZHU Weiyao ,
  • TIAN Ying'ai ,
  • YU Mingxu ,
  • HAN Hongyan ,
  • ZHANG Xueling
Expand
  • Civil and Environmental Engineering School, University of Science and Technology, Beijing 100083, China

Received date: 2014-06-10

  Revised date: 2014-07-02

  Online published: 2014-09-30

摘要

针对低渗透油藏储层孔隙喉道小的特点,采用管径为20、15、10、5 μm 的微圆管,以去离子水和煤油为流动介质,研究微圆管中流体的微观流动规律,分析去离子水和煤油的实验流速、有效边界层厚度与压力梯度的关系,考察壁面润湿性和流体黏度对微流动规律的影响。研究表明,微管中流体流速与压力梯度基本成线性关系,随着微管管径的减小,流体流动的非线性程度增强,且驱动压力越大,微管有效边界层厚度越小,参与流动的流体更多,有效流体边界层厚度占微管管径的比例也随之降低;微管壁面由亲水性变为疏水性后,流体流速均高于改性前,微管管径越大,作用效果越显著;改变流体黏度时,出现明显的启动压力梯度特征,实验流体黏度从2.40 mPa·s 增至10.20 mPa·s 时,对应的启动压力梯度由1.26 MPa/m 增加到6.83 MPa/m。

本文引用格式

朱维耀 , 田英爱 , 于明旭 , 韩宏彦 , 张雪龄 . 微圆管中流体的微观流动机制[J]. 科技导报, 2014 , 32(27) : 23 -27 . DOI: 10.3981/j.issn.1000-7857.2014.27.003

Abstract

Low permeability reservoir usually has small pore throat.Based on this characteristic, the mechanism of microscopic fluid flowin microtubes was studied using one-dimensional microtubeswith inner diameters of 5, 10, 15, 20 μm with deionized water and kerosene as the flow media.The relationshipsamong flow rate, boundary layer thickness and pressure gradient are revealed.Microtubule surface wettabilitywas changed from hydrophilic to hydrophobic with mixtures of dimethyldichlorosilane, kerosene, and siliconearein different proportions to form four different simulated oil viscosities to study the law governing the fluid flow. The results show that the fluid flow rate hada linearrelationship with pressure gradient, but nonlinearity of fluid flow gradually increased with decrease of the microtubule diameter. Also, the higher the driving pressure, the smaller the effective boundary layer thickness, and the ratio of effective fluid boundary layer thickness to microtubulediameter decreased with pressure gradient. The fluid velocity was higher than that before modification of the microtubule wall from hydrophilic to hydrophobic,and the larger the size of microtubules, the more significant the effect. The pressure gradientincreased significantly from 1.26 MPa/m to 6.83 MPa/m when the viscosity of the flow media was changedfrom 2.40 mPa·s to 10.20 mPa·s.

参考文献

[1] 霍英彩, 张永成, 贾敏. 低渗透油藏评价研究现状[J]. 内蒙古石油化工, 2009(17): 132-135. Huo Yingcai, Zhang Yongcheng, Jia Min. Research of low permeability reservoir evaluation[J]. Inner Mongolia Petrochemical Industry, 2009 (17): 132-135.
[2] 胡文瑞. 中国低渗透油气的现状与未来[J]. 中国工程科学, 2009, 11 (8): 29-37. Hu Wenrui. The present and future of low permeability oil and gas in China[J]. Engineering Sciences, 2009, 11(8): 29-37.
[3] 黄延章. 低渗透油层非线性渗流特征[J]. 特种油气藏, 1997, 4(1): 9-11. Huang Yanzhang. Nonlinear percolation feature in low permeability reservior[J]. Special Oil and Gas Reservoirs, 1997, 4(1): 9-11.
[4] 蔡宝君. 基于微观渗流机理的宏观渗流规律研究[D]. 东营: 中国石油大学, 2010. Cai Baojun. Study of macroseepage flow faw based on microseepage mechanism[D]. Dongying: China University of Petroleum, 2010.
[5] 张楠, 孙中宁. 多孔介质通道内气-液两相流动阻力特性实验[J]. 核动力工程, 2011, 32(3): 106-110, 126. Zhang Nan, Sun Zhongning. Experimental investigation on resistance characteristics of two-phase flow through porous mediachannel[J]. Nuclear Power Engineering, 2011, 32(3): 106-110, 126.
[6] 杨仁锋, 姜瑞忠, 孙君书, 等. 低渗透油藏非线性微观渗流机理[J]. 油气地质与采收率, 2011, 18(2): 90-97. Yang Renfeng, Jiang Ruizhong, Sun Junshu, et al. Studies on nonlinear flow mechanism in low permeability porousmedium[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(2): 90-97.
[7] 凌智勇, 丁建宁, 杨继昌, 等. 微流动的研究现状及影响因素[J]. 江苏大学学报: 自然科学版, 2002, 23(6): 1-5. Ling Zhiyong, Ding Jianning, Yang Jichang, et al. Research advance in microfluid and its influencing factors[J]. Journal of Jiangsu University: Natural Science, 2002, 23(6): 1-5.
[8] 李卓, 唐桂华, 陶文铨. 微通道中极性流体流动特性的研究[J]. 西安交通大学学报, 2007, 41(3): 274-278. Li Zhuo, Tang Guihua, Tao Wenquan. Investigation on flow characteristics of polar fluids in microchannels[J]. Journal of Xi′ an Jiaotong University, 2007, 41(3): 274-278.
[9] 孙尚武, 凌智勇, 杨继昌, 等. 两种液体在微圆管道内流动特性的试验研究[J]. 机械设计与制造, 2005, 1(7): 112-113. Sun Shangwu, Ling Zhiyong, Yang Jichang, et al. Experimental research on two kinds of liquid flow in microchannles[J]. Machinery Design and Manufacture, 2005, 1(7): 112-113.
[10] 王斐, 岳湘安, 王雯靓, 等. 润湿性对模拟原油微尺度流动和渗流的影响[J]. 石油学报, 2010, 31(2): 302-305. Wang Fei, Yue Xiang'an, Wang Wenliang, et al. Influence of wettability on microscale flow and seepage characteristics of simulated crude oil[J]. Acta Petrolei Sinica, 2010, 31(2): 302-305.
[11] 李洋, 雷群, 刘先贵, 等. 微尺度下的非线性渗流特征[J]. 石油勘探与开发, 2011, 38(3): 336-340. Li Yang, Lei Qun, Liu Xiangui, et al. Characteristics of micro scale nonlinear filtration[J]. Petroleum Explorationand Development, 2011, 38(3): 336-340.
[12] 王斐, 岳湘安, 庞宏伟, 等. 低渗透储层中氮气的微尺度流动及其对渗流的影响[J]. 西安石油大学学报: 自然科学版, 2012, 27(1): 57-59. Wang Fei, Yue Xiang′an, Pang Hongwei, et al. Micro-scale flow effect of nitrogen in low-permeability reservoir and its influence on gas seepage[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2012, 27(1): 57-59.
[13] Kandlikar S. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26(2-4): 389-407.
[14] Pfahler J, Harley J, Bau H, et al. Liquid and gas transport in small channels[J]. Proceeding of ASMEDSC, 1990, 31: 685-692.
[15] 刘卫东, 刘吉, 孙灵辉, 等. 流体边界层对低渗透油藏渗流特征的影响[J]. 科技导报, 2011, 29(22): 42-44. Liu Weidong, Liu Ji, Sun Linghui, et al. Influence of fluid boundary layer on fluid flow in lowpermeability oilfields[J]. Science and Technology Review, 2011, 29(22): 42-44.
[16] 凌智勇, 刘勇, 丁建宁, 等. 亲水性和疏水性微管道中流动滑移特性的实验研究[J]. 中国机械工程, 2006, 17(22): 2326-2329. Ling Zhiyong, Liu Yong, Ding Jianning, et al. Experimental study on the characteristics of slip in hydrophilic and hydrophobic microchannels[J]. China Mechanical Engineering, 2006, 17(22): 2326-2329.
[17] Kumar V, Paraschivoiu M, Nigam K. Single-phase fluid flow and mixing in microchannels[J]. Chemical Engineering Science, 2011, 66(7): 1329-1373.
[18] 林彦兵, 刘艳, 侯光东. 低渗透油田粘度效应的实验研究[J]. 特种油气藏, 2004, 11(4): 95-97. Lin Yanbing, Liu Yan, Hou Guangdong. Experimental study of the effect in low-permeability oil viscosity[J]. Special Oil and Gas Reservoirs, 2004, 11(4): 95-97.
文章导航

/