研究论文

基于多传感器数据融合的四旋翼飞行器的姿态解算

  • 万晓凤 ,
  • 康利平 ,
  • 余运俊 ,
  • 林伟财
展开
  • 南昌大学电气与自动化工程系, 南昌 330031
万晓凤,教授,研究方向为计算机控制与嵌入式智能仪表,电子信箱:xfwan_jx@163.com;余运俊(共同第一作者),博士,研究方向为智能控制,电子信箱:yuyunjun@ncu.edu.cn

收稿日期: 2014-03-12

  修回日期: 2014-05-05

  网络出版日期: 2014-07-16

基金资助

国家国际科技合作专项(2014DFG72240);江西科技支撑计划项目(2013BBE50102,20132BBE50049)

A Four-rotor Aircraft Attitude Solver Based on Multi-sensor Data Fusion

  • WAN Xiaofeng ,
  • KANG Liping ,
  • YU Yunjun ,
  • LIN Weicai
Expand
  • Electrical and Automation Engineering Department, Nanchang University, Nanchang 330031, China

Received date: 2014-03-12

  Revised date: 2014-05-05

  Online published: 2014-07-16

摘要

用于农田信息采集的四旋翼飞行器姿态解算过程中,存在姿态角测量不够准确这一难题。选择基于加速度计、电子罗盘与陀螺仪的捷联式惯性测量系统,采用卡尔曼滤波算法,通过融合多个传感器的测量数据,解算出高精度的姿态角。为验证卡尔曼滤波算法的有效性和实用性,搭建了四旋翼飞行器姿态检测实验平台。结果表明,经卡尔曼滤波算法处理之后的姿态角动态响应好,解算精度高,其最大跟踪误差控制在±1.5°以内,消除了由加速度计或电子罗盘带来的测量白噪声,也有效抑制了陀螺仪的温度漂移,满足四旋翼飞行器对姿态解算精度的要求。

本文引用格式

万晓凤 , 康利平 , 余运俊 , 林伟财 . 基于多传感器数据融合的四旋翼飞行器的姿态解算[J]. 科技导报, 2014 , 32(19) : 31 -35 . DOI: 10.3981/j.issn.1000-7857.2014.19.004

Abstract

The attitude angle measurement is not accurate in the process of four-rotor aircraft attitude solving for the field information collection. To deal with this problem, we choose the inertial measurement system based on accelerometer, electronic compass and gyro, and combine the plurality of sensor measurement by a Kalman filter algorithm to get the precision attitude angle. We set up an actual four-rotor attitude detection platform to verify the effectiveness and practicality of the Kalman filter algorithm. The results show that the dynamic response and the precision of the attitude angle are better and the maximum tracking error can be controlled within ±1.5°. The application of the Kalman filter algorithm in attitude solver can not only eliminate the white noise caused by the accelerometer and electronic compass but also inhibit the temperature drift of the gyro effectively. The attitude angle can meet the accuracy requirement of the attitude solution of the four-rotor.

参考文献

[1] 姬江涛, 扈菲菲, 贺智涛, 等. 四旋翼无人机在农田信息获取中的应用[J]. 农机化研究, 2013(2): 1-4. Ji Jiangtao, Hu Feifei, He Zhitao, et al. The application of quad-rotor UAV in farmland information acquisition[J]. Journal of Agricultural Mechanization Research, 2013(2): 1-4.
[2] 王冬来, 吕强, 刘峰. 小型四轴飞行器动力学参数测定方法设计[J]. 科 技导报, 2011, 29(36): 42-45. Wang Donglai, Lü Qiang, Liu Feng. Determination of quadrotor dynamic parameters[J]. Science & Technology Review, 2011, 29(36): 42-45.
[3] 李继宇, 张铁民, 彭孝东, 等. 小型无人机在农田信息监测系统中的应 用[J]. 农机化研究, 2010, 32(5): 183-186. Li Jiyu, Zhang Tiemin, Peng Xiaodong, et al. The application of small UAV (SUAV) in farmland information monitoring system[J]. Journal of Agricultural Mechanization Research, 2010, 32(5): 183-186.
[4] 张浩, 任芊. 四旋翼飞行器航姿测量系统的数据融合方法[J]. 兵工自 动化, 2013, 32(1): 28-31. Zhang Hao, Ren Qian. Data fusion method of quad-rotor aircraft attitude measurement system[J]. Ordnance Industry Automation, 2013, 32(1): 28-31.
[5] 吴勃, 徐欢, 乔相伟. 状态切换UKF的飞行器姿态确定算法[J]. 电机 与控制学报, 2012, 16(6): 98-104. Wu Bo, Xu Huan, Qiao Xiangwei. State switch UKF algorithm and its application in attitude estimation[J]. Electric Machines and Control, 2012, 16(6): 98-104.
[6] 冯智勇, 曾瀚, 张力, 等. 基于陀螺仪及加速度计信号融合的姿态角度 测量[J]. 西南师范大学学报: 自然科学版, 2011, 36(4): 137-141. Feng Zhiyong, Zeng Han, Zhang Li, et al. Angle measurement based on gyroscope and accelerometer signal fusion[J]. Journal of Southwest China Normal University: Natural Science Edition, 2011, 36(4): 137-141.
[7] 兰建军, 谭力弓, 朴亨, 等. 惯性传感器和互补滤波器在姿态估计中的 应用[J]. 制造业自动化, 2013, 35(9): 65-67. Lan Jianjun, Tan Ligong, Pu Heng, et al. Inertial sensors and complementary filter application in the attitude estimation[J]. Manufacturing Automation, 2013, 35(9): 65-67.
[8] 邹波, 张华, 姜军. 多传感信息融合的改进扩展卡尔曼滤波定姿[J]. 计 算机应用研究, 2013, 11(31): 1-5. Zou Bo, Zhang Hua, Jiang Jun. Multi-sensor information fusion's improved extended Kalman filter attitude determination[J]. Application Research of Computers, 2013, 11(31): 1-5.
[9] 谈振藩, 张勤拓. MEMS 陀螺误差辨识与补偿[J]. 传感器与微系统, 2010, 29(3): 39-41. Tan Zhenfan, Zhang Qintuo. Error identification and compensation of MEMS gyroscope[J]. Transducer and Microsystem Technologies, 2010, 29(3): 39-41.
[10] 彭孝东, 陈瑜, 李继宇, 等. MEMS三轴数字陀螺仪标定方法研究[J]. 传感器与微系统, 2013, 6(31): 63-69. Peng Xiaodong, Chen Yu, Li Jiyu, et al. Study on calibration method of MEMS 3-axis digital gyroscope[J]. Transducer and Microsystem Technologies, 2013, 6(31): 63-69.
[11] 陈芸芝, 汪小钦, 吴波, 等. 基于自适应加权平均的水色遥感数据融 合[J]. 遥感技术与应用, 2012, 27(3): 333-338. Chen Yunzhi, Wang Xiaoqin, Wu Bo, et al. Ocean color data merging based on adaptive weighted averaging[J]. Remote Sensing Technology and Application, 2012, 27(3): 333-338.
[12] 周观民, 李荣会. 基于神经网络的传感器网络数据融合技术研究[J]. 计算机仿真, 2011, 10(28): 118-120. Zhou Guanmin, Li Ronghui. Sensor network based on neural network data fusion technology[J]. Computer Simulation, 2011, 10(28): 118-120.
[13] 钱鋆, 欧阳红林, 范祝霞, 等. 基于EKF的双Y移30°六相PMSM无速 度传感器控制系统研究[J]. 科技导报, 2009, 27(17): 65-68. Qian Jun, Ouyang Honglin, Fan Zhuxia, et al. Study on extended Kalman filtering for sensorless control of dual Y shift 30 degree PMSM drive system[J]. Science & Technology Review, 2009, 27(17): 65-68.
[14] 邓胡滨, 张磊, 吴颖, 等. 基于卡尔曼滤波算法的轨迹估计研究[J]. 传 感器与微系统, 2012, 31(5): 4-7. Deng Hubin, Zhang Lei, Wu Ying, et al. Research on track estimation based on Kalman filtering algorithm[J]. Transducer and Microsystem Technologies, 2012, 31(5): 4-7.
[15] 韩志凤, 李荣冰, 刘建业, 等. 小型四旋翼飞行器试验平台设计[J]. 测 控技术, 2013, 10(32): 121-124. Han Zhifeng, Li Rongbing, Liu Jianye, et al. Design of test platform for small scale quad rotors[J]. Measurement & Control Technology, 2013, 10(32): 121-124.
文章导航

/