研究论文

基于PSO-ELM的建筑物爆破震动速度预测

  • 王新民 ,
  • 万孝衡 ,
  • 朱阳亚 ,
  • 姜志良 ,
  • 刘吉祥
展开
  • 中南大学资源与安全工程学院, 长沙 410083

收稿日期: 2014-03-10

  修回日期: 2014-05-12

  网络出版日期: 2014-07-16

基金资助

国家科技支撑计划项目(2006BAB02A03);“十一五”国家科技支撑计划项目(2006BA02B05)

Prediction for Building Vibration Velocity Caused by Blasting Based on PSO-ELM

  • WANG Xinmin ,
  • WAN Xiaoheng ,
  • ZHU Yangya ,
  • JIANG Zhiliang ,
  • LIU Jixiang
Expand
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Received date: 2014-03-10

  Revised date: 2014-05-12

  Online published: 2014-07-16

摘要

针对影响爆破震动速度因素之间复杂的非线性关系,利用粒子群算法(PSO)的全局搜索最优解原理和极限学习机(ELM)处理非线性关系能力,建立了爆破震动速度预测的PSO-ELM 模型。以某地区爆破震动实测数据为例,选取总药量、最大段药量、爆破点与监测点距离、建筑物所在地面震动速度和测点到地面的高度等5 个因素为输入变量,以建筑物震动速度为输出变量。结果表明,PSO-ELM 模型训练值与预测值,测试值与预测值的均方误差分别为0.18 和2.56,平均相对误差控制在6%以内,显示出该模型具有良好的训练精度和泛化能力。对比传统ELM 模型,PSO-ELM 模型不但提高了精度和泛化能力,而且降低了训练样本数和隐含层节点数变化对训练结果的影响,提高了模型的拟合能力,在类似预测工程中有一定的推广价值。

本文引用格式

王新民 , 万孝衡 , 朱阳亚 , 姜志良 , 刘吉祥 . 基于PSO-ELM的建筑物爆破震动速度预测[J]. 科技导报, 2014 , 32(19) : 15 -20 . DOI: 10.3981/j.issn.1000-7857.2014.19.001

Abstract

Aimed at the complicated nonlinear relation between the factors influencing the blasting vibration velocity, a blasting vibration velocity prediction model is built by using the particle swarm optimization (PSO) global search optimal solution principle and extreme learning machine (ELM) ability which can deal with the nonlinear relationship. Taking blasting vibration measured data in a certain area as an example, the total dose, the explosive charge, the distance between shot and monitoring point, the ground vibration velocity and the height of the monitoring point are selected as input variables and the building vibration velocity is chosen as the output variable. The result shows that the mean square errors between training value and predicted value and between test value and predicted value are 0.18 and 2.56, respectively, and the average relative error is controlled within 6%. It is proved that the model has good precision and generalization ability. Compared with the traditional ELM model, the PSO-ELM model not only improves the accuracy and generalization ability, but also reduces the influence on the result of training when the numbers of training samples and the hidden layer nodes change, thus the fitting ability of the model is improved. This model has great a promotional value in similar predictive engineering.

参考文献

[1] 李夕兵. 凿岩爆破工程[M]. 长沙: 中南大学出版社, 2011. Li Xibing. Drilling and blasting engineering[M]. Changsha: Central South University Press, 2011.
[2] 钮强. 岩石爆破机理[M]. 沈阳: 东北工学院出版社, 1990. Niu Qiang. Mechanism of rock blasting[M]. Shenyang: Press of Northeastern Technique Institute, 1990.
[3] 张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993. Zhang Shouzhong. Explosion and shock dynamics[M]. Beijing: Ordnance Industry Publishing House, 1993.
[4] 杨佑发, 崔波. 爆破震动速度峰值的预测[J]. 振动与冲击, 2009, 28 (10): 195-197. Yang Youfa, Cui Bo. Prediction for vibration intensity due to blasting induced ground motions[J]. Journal of Vibration and Shock, 2009, 28 (10): 195-197.
[5] 张世雄, 杨明亮, 尹家国, 等. 预测爆破波振动强度的经验公式及其在 采矿中的应用[J]. 爆破, 2000, 17(3): 3-17. Zhang Shixiong, Yang Mingliang, Yin Jiaguo, et al. An empirical formula of calculating the vibrating intensity of explosive wave and its application in mining[J]. Blasting, 2000, 17(3): 13-17.
[6] Hao H, Ma G W, Lu Y. Damage assessment of masonry infilled RC frames subjected to blasting induced ground excitations[J]. Engineering Structures, 2002, 24(6): 799-809.
[7] 龚声武, 凌同华. 爆破震速预测的模糊神经网络模型及其应用[J]. 矿业 研究与开发, 2009, 29(2): 95-97. Gong Shengwu, Ling Tonghua. Fuzzy neural network model of peak particle vibration velocity forecast for blasting and its application[J]. Mining Research and Development, 2009, 29(2): 95-97.
[8] 邵晓宁, 徐颖. 岩体爆破振速和损伤预测的支持向量机方法[J]. 采矿 与安全工程学报, 2011, 28(3): 384-390. Shao Xiaoning, Xu Ying. Prediction of vibration velocity and damnification during rock blasting based on support vector machine method[J]. Journal of Mining & Safety Engineering, 2011, 28(3): 384-390.
[9] 潘华贤, 程国建, 蔡磊. 极限学习机与支持向量机在储层渗透率预测 中的对比研究[J]. 计算机工程与科学, 2010, 32(2): 131-134. Pan Huaxian, Cheng Guojian, Cai Lei. Comparison of the extreme learning machine with the support vector machine for reservoir permeability prediction[J]. Computer Engineering & Science, 2010, 32 (2): 131-134.
[10] Huang G B. Zhu Q Y. Siew C K. Extreme learning machine: Theory and application[J]. Neuro Computing, 2006, 70(1-3): 489-501.
[11] 刘国海, 张东娟, 梅从立. 基于IRLS-ELM生物发酵在线软测量建模 方法[J]. 东南大学学报: 自然科学版, 2011, 41(S1): 10-13. Liu Guohai, Zhang Dongjuan, Mei Congli. Soft sensor modeling based on improved regularized least-squares extreme learning machine method[J]. Journal of Southeast University: Natural Science Edition, 2011, 41(S1): 10-13.
[12] 王杰, 毕浩洋. 一种基于粒子群优化的极限学习机[J]. 郑州大学学报: 理学版, 2013, 45(1): 100-104. Wang Jie, Bi Haoyang. A new extreme learning machine optimized by PSO[J]. Journal of Zhengzhou University: Natural Science Edition, 2013, 45(1): 100-104.
[13] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE 1995: 1942-1948.
[14] 张红亮, 王水林, 吕颖慧, 等. 爆破震动效应的支持向量机分析预测[J]. 矿业研究与开发, 2007, 27(4): 57-58. Zhang Hongliang, Wang shuilin, Lü Yinghui, et al. Analysis and forecast of basting vibration effect based on support vector machine[J]. Mining Research and Development, 2007, 27(4): 57-58.
[15] 雷德明, 严新平. 多目标智能优化算法及其应用[M]. 北京: 科学出版 社, 2009. Lei Deming, Yan Xinping. Multiple objective intelligent optimization algorithms and application[M]. Beijing: Science Press, 2009.
[16] 范胜波, 王太勇, 汪文津, 等. 样本数量对切削力的神经网络预测精 度的影响[J]. 西南交通大学学报, 2005, 40(5): 637-640. Fan Shengbo, Wang Taiyong, Wang Wenjin, et al. Effect of number of training samples on ANN prediction accuracy for cutting force[J]. Journal of Southwest Jiaotong University, 2005, 40(5): 637-640.
文章导航

/