为实现具有环境自适应能力的全方位移动的机器人,分析了当前移动机器人运动路径规划中存在的问题,提出一种路径预设移动机器人的设计方案。该系统由移动机器人和无线遥控器两个部分组成,采用霍尔传感器、红外避障传感器和电子指南针等多种传感器的融合,实现移动机器人的精确移动、路径学习和信息存储。从记录模式和移动模式两个方面阐述了系统工作流程。调试结果表明,设计提出的移动机器人能搭载各种设备,完成按预设路径移动并反向返回的功能,适于在智能家居等环境中进行监控采集等应用。
The existing problems of motion path planning are analyzed. A design scheme based on predefined path is proposed for a mobile robot of full range movement to achieve its self-adaption ability of the environment. The structure of the system and main function modules are introduced. The system is composed of a mobile robot, wireless remote controller, and various sensors including hall sensor, the infrared obstacle avoidance sensor and electronic compass to realize the robot's accurate move, path learning and information storage. The system workflow is elaborated from the record mode and moving mode. The test results show that the mobile robot can carry various equipment and actualize the movement according to the predefined path and return. It is good for the application of monitoring and collection in a smart home environment.
[1] 李新德. 基于手绘地图和路径的移动机器人视觉导航方法: 中国, 201010577112.5[P]. 2011-06-08. Li Xinde. Visual navigation method for mobile robot based on handdrawn map and path: CN, 201010577112.5[P]. 2011-06-08.
[2] 吴万水. 移动机器人的自适应路径控制方法: 中国, 201110101450.6[P]. 2011-09-14. Wu Wanshui. Adaptive path control method for mobile robot: CN, 201110101450.6[P]. 2011-09-14.
[3] 康亮. 引入偏微分方程求解移动机器人路径规划的方法: 中国, 201210183239.8[P]. 2012-10-03. Kang Liang. Mobile robot path planning with the method of partial differential equation: CN, 201210183239.8[P]. 2012-10-03.
[4] 王晶. 智能小车运动控制技术的研究[D]. 武汉: 武汉理工大学, 2009. Wang Jing. Research on control technology for the intelligent vehicle[D]. Wuhan: Wuhan University Technology, 2009.
[5] 韩雪原, 王瑞荣, 段翠翠. 基于Zigbee定位系统节点及测距技术研究[J]. 杭州电子科技大学学报, 2012(6): 1-4. Han Xueyuan, Wang Ruirong, Duan Cuicui. The study of positioning system node ranging based on zigbee[J]. Journal of Hangzhou Dianzi University, 2012(6): 1-4.
[6] 罗亚辉, 蒋蘋, 胡文武. 多传感器融合定位控制系统设计[J]. 湖南文理学院学报, 2012(1): 1-3. Luo Yahui, Jiang Ping, Hu Wenwu. The design of multi-sensor fusion location controlling system[J]. Journal of Hunan University of Arts and Science, 2012(1): 1-3.
[7] 肖海荣, 富文军, 张晓军, 等. 基于多传感器数据融合的移动机器人导航[J]. 系统工程与电子技术, 2001, 23(7): 66-68. Xiao Hairong, Fu Wenjun, Zhang Xiaojun, et al. Mobile robotics navigation based on multi-sensory data fusion[J]. Systems Engineering and Electronics, 2001, 23(7): 66-68.
[8] Rojas J, Peters II R A. Analysis of autonomous cooperative assembly using coordination schemes by heterogeneous robots using a control basis approach[J]. Autonomous Robots, 2012, 32(4): 369-383.
[9] Winfield A F T, Erbas M D. On embodied memetic evolution and the emergence of behavioural traditions in robots[J]. Memetic Computing, 2011, 3(4): 261-270.
[10] Stulp F. Implicit coordination with shared belief: A heterogeneous robot soccer team case study[J]. Advanced Robotics, 2010, 24(7): 1017-1036.