专题论文

多孔氧化铝膜色彩特性研究进展

  • 胡海宁
展开
  • 上海电力学院数理学院, 上海200090
胡海宁,副教授,研究方向为纳米材料,电子信箱:haininghu@163.com

收稿日期: 2013-08-27

  修回日期: 2013-12-10

  网络出版日期: 2014-04-10

基金资助

上海市教育委员会科研(创新)项目(10ZZ117)

A Review of Studies of Optical Properties of Color Tunable Anodic Alumina Membrane

  • HU Haining
Expand
  • School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China

Received date: 2013-08-27

  Revised date: 2013-12-10

  Online published: 2014-04-10

摘要

介绍了利用阳极氧化法制备的氧化铝膜板(AAM)的色彩特性。利用阳极氧化法制备的AAM,其色彩分布于整个可见光区,不同的色彩主要来源于光的干涉现象。AAM 的这种特性可广泛应用于染色、彩色显示、装饰装潢、防伪、纺织工业等。人工制备AAM 彩色膜板得到研究人员的广泛关注,其制备方法包括:AAM 多层膜结构、金属覆盖AAM 结构、碳纳米管复合AAM 结构、沉积纳米线的AAM 结构等。从周期性氧化电压法制备周期性多层结构AAM 光子晶体开始,按照改善AAM 色彩饱和度方法的不同分为5 个部分,综述了近年来对AAM 色彩特性的研究进展。

本文引用格式

胡海宁 . 多孔氧化铝膜色彩特性研究进展[J]. 科技导报, 2014 , 32(9) : 71 -78 . DOI: 10.3981/j.issn.1000-7857.2014.09.011

Abstract

The studies of the structural colors of the anodic alumina membrane (AAM) fabricated by electrochemical oxidation of Al are reviewed in this paper. The color tuning of the AAM is predominantly due to the interference enhancement of the nanostructure and the colors obtained cover the whole light range and can be precisely tuned. These properties are of technological importance for applications in the fields of painting, color display, decoration, anti-counterfeiting and textiles. Recently, a considerable attention is paid to the construction of man-made systems with interference colors, such as multilayer structures, metal-coated or carbon-coated thin anodic alumina templates, anodic alumina membranes embedded with metal. The relationship between the brilliant colors and the microstructures is obtained for each man-made system.

参考文献

[1] Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum[J]. Journal of the Electrochemical Society, 1953, 100(9): 411-419.
[2] Masuda H, Nishio K, Baba N. Preparation of microporous metal membranes by two- step replication of the microstructure of anodic alumina[J]. Thin Solid Films, 1993, 223(1): 1-3.
[3] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a twostep replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268(5216): 1466-1468.
[4] Masuda H, Yamada H, Satoh M, et al. Highly ordered nanochannelarray architecture in anodic alumina[J]. Applied Physics Letters, 1997, 71(19): 2770-2772.
[5] Whitney T M, Jiang J S, Searson P C, et al. Fabrication and magnetic properties of arrays of metallic nanowires[J]. Science, 1993, 261(5126): 1316-1319.
[6] Martin C R. Nanomaterials-a membrane-based synthetic approach[J]. Science, 1994, 266(96): 1961-1966.
[7] Fert A, Piraux L, Magnetic nanowires[J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1-3): 338-358.
[8] Liu C H, Zapien J A, Yao Y, et al. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays[J]. Advanced Materials, 2003, 15 (10): 838-841.
[9] Kyotani T, Tsai L, Tomita A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template[J]. Chemistry of Materials, 1995, 7(8):1427,
[10] Wang X H, Akahane T, Orikasa H, et al. Brilliant and tunable color of carbon- coated thin anodic aluminum oxide films[J]. Applied Physics Letters, 2007, 91(1): 011908.
[11] Che G, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393(6683): 346-349.
[12] Li J, Papadopoulos C, Xu J. Nanoelectronics: Growing Y- junction carbon nanotubes[J]. Nature, 1999, 402(6759): 253-254.
[13] Diggle J W, Downie T C, Goulding C W. Anodic oxide films on aluminum[J]. Chemical Reviews, 1969, 69(3): 365-405.
[14] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059 – 2062.
[15] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
[16] Yablonovitch E, Gmitter T J. Photonic band structure: the facecentered- cubic case[J]. Physical Review Letters, 1989, 63(18): 1950-1953.
[17] Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure: The face- centered- cubic case employing nonspherical atoms[J].Physical Review Letters, 1991, 67(17): 2295–2298.
[18] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.
[19] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773): 53-56
[20] Wang B, Fei G T, Wang M, et al. Preparation of photonic crystals made of air pores in anodic alumina[J]. Nanotechnology, 2007, 18(36): 71-74.
[21] Zheng W J, Fei G T, Wang B, et al. Distributed Bragg reflector made of anodic alumina membrane[J]. Materials Letters, 2009, 63(8): 706- 708.
[22] Zheng W J, Fei G T, Wang B, et al. Modulation of transmission spectra of anodized alumina membrane distributed Bragg reflector by controlling anodization temperature[J]. Nanoscale research letters, 2009, 4(7): 665–667.
[23] Hu X, Ling Z Y, Chen S S, et al. Influence of light scattering on transmission spectra of photonic crystals of anodized alumina[J]. Chinese Physics Letter, 2008, 25(9): 3284.
[24] Hu X, Ling Z Y, He X H, et al. Controlling transmission spectra of photonic crystals under electrochemical oxidization of aluminum[J]. Journal of the Electrochemical Society, 2009, 156(5): C176-C179.
[25] Xu Q, Sun H Y, Yang Y H, et al. Optical properties and color generation mechanism of porous anodic alumina films[J]. Applied Surface Science, 2011, 258(5): 1826-1830.
[26] Xu Q, Yang Y H, Gu J J, et al. Influence of Al substrate on the optical properties of porous anodic alumina films[J]. Materials Letters, 2012, 74: 137–139
[27] Xu Q, Yang Y H, Liu L H, et al. Synthesis and optical properties of iridescent porous anodic alumina thin films[J]. Journal of The Electrochemical Society, 2011, 159(1): C25-C28.
[28] Wang X H, Akahane T, Orikasa H, et al. Brilliant and tunable color of carbon- coated thin anodic aluminum oxide films[J]. Applied Physics Letters, 2007,91(1): 011908.
[29] Zhao X L, Meng G W, Xu Q L, et al. Color fine- tuning of CNTS@AAO composite thin films via isotropically etching porous AAO before cnt growth and color modification by water infusion[J]. Advanced Materials, 2010, 22(24): 2637-2641.
[30] Wang X Q, Zhang D X, Zhang H J, et al. Tuning color by pore depth of metal- coated porous alumina[J]. Nanotechnology, 2011, 22(30): 305-306.
[31] Wang X Q, Zhang H J, Zhang D X, et al. Color tuning by local sputtering metal nanolayer on microstructured porous alumina[J]. Microscopy Research and Technique, 2012, 75(5): 698-701.
[32] Chen H M, Hsin C F, Liu R S, et al. Controlling optical properties of aluminum oxide using electrochemical deposition[J]. Journal of The Electrochemical Society, 2007, 154(6): K11-K14.
[33] Hu X, Pu Y J, Ling Z Y, et al. Coloring of aluminum using photonic crystals of porous alumina with electrodeposited Ag[J]. Optical Materials, 2009,32(2): 382–386.
[34] Li J, Papadopoulos C, Xu J. Nanoelectronics: Growing Y- junction carbon nanotubes[J]. Nature, 1999, 402(6759): 253-254.
[35] Wang B, Fei G T, Wu B, et al. Preparation of three- dimensional netlike mesoporous alumina membrane[J]. Chemistry Letters, 2006, 35 (12): 1336-1337.
[36] Liu Y S, Chang Y, Ling Z Y, et al. Structural coloring of aluminum[J]. Electrochemistry Communications, 2011, 13(12): 1336-1339.
[37] Peng Y, Fei G T, Shang G L, et al. Fabrication of one-dimensional alumina photonic crystals with a narrow band gap and their application to high- sensitivity sensors[J]. Journal of Materials Chemistry C, 2013, 1(8): 1659-1664.
[38] Zong R L, Zhou J, Li Q, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane[J]. The Journal of Physical Chemistry B, 2004, 108(43): 16713-16716.
[39] Gao T R, Chen Z Y, Peng Y, et al. Fabrication and optical properties of platinum nanowire arrays on anodic aluminium oxide templates[J]. Chinese Physics, 2002, 11(12): 1307.
[40] Ji N, Ruan W, Wang C, et al. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surfaceenhanced Raman scattering and thin film interference[J]. Langmuir, 2009, 25(19): 11869-11873.
[41] Ye Y H, Huang Y J, Lu W T, et al. Tuning the optical properties of metamaterials based on gold nanowire arrays embedded in alumina[J]. Optical Materials, 2011, 33(11): 1667-1670.
[42] Yasui A, Iwasaki M, Kawahara T, et al. Color properties of gold – silver alternate nanowires electrochemically grown in the pores of aluminum anodic oxidation film[J]. Journal of Colloid and Interface Science, 2006, 293(2): 443-448.
[43] Evans P R, Hendren W R, Atkinson R, et al. Optical transmission measurements of silver, silver–gold alloy and silver–gold segmented nanorods in thin film alumina[J]. Nanotechnology, 2008, 19(46): 465708.
文章导航

/