研究论文

表面活性剂对煤层气压裂伤害研究

  • 夏永江 ,
  • 管保山 ,
  • 梁利 ,
  • 刘萍
展开
  • 1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
    2. 中国石油勘探开发研究院廊坊分院, 廊坊 065007
夏永江,博士后,研究方向为储层改造,电子信箱:xiayongjiang3286@163.com

收稿日期: 2013-10-23

  修回日期: 2014-01-15

  网络出版日期: 2014-03-26

基金资助

国家科技重大专项(2008ZX05037)

Fracturing Damage of Coal Bed Methane Caused by Surfactants

  • XIA Yongjiang ,
  • GUAN Baoshan ,
  • LIANG Li ,
  • LIU Ping
Expand
  • 1. College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China;
    2. Petro China Research Institute of Petroleum Exploration & Development-Langfang, Langfang 065007, China

Received date: 2013-10-23

  Revised date: 2014-01-15

  Online published: 2014-03-26

摘要

为评价压裂液中表面活性剂对煤层气压裂过程的影响,利用煤岩样品针对阳离子、非离子、阴离子表面活性剂和表面活性剂复配体系,开展膨胀性、润湿性、吸附性能、表面张力、煤岩伤害和煤层气吸附解吸附物理模拟实验。将不同表面活性剂和复配体系的煤岩膨胀高度、接触角、煤粉中吸附形态和吸附量、措施前后表面张力和煤岩渗透率、吸附和解吸附曲线进行对比分析,进而优选表面活性剂体系。研究结果表明:水和表面活性剂溶液对所选煤岩膨胀性影响不大;阳离子可以增加憎水性,非离子保持煤岩水润湿性,阴离子会增加煤岩水润性;非离子表面活性剂有利于扩大煤岩孔隙进而提高煤层气的解吸附作用;双子表面活性剂(GM)为点状吸附,烷基酚聚氧乙烯醚(OP)为平铺吸附,十八烷基三甲基氯化铵(1831)为连体状吸附;双子-烷基酚聚氧乙烯醚(GMOP-4)复配体系措施前后表面张力较低,大幅度降低了GM 的吸附量且对煤层气解吸附过程具有促进作用;GMOP-4 复配体系实现了阳离子表面活性剂在煤层气压裂措施中低成本、高性能的应用。

本文引用格式

夏永江 , 管保山 , 梁利 , 刘萍 . 表面活性剂对煤层气压裂伤害研究[J]. 科技导报, 2014 , 32(8) : 32 -38 . DOI: 10.3981/j.issn.1000-7857.2014.08.004

Abstract

The coal expansibility, wettability, adsorption, surface tension, damage, adsorption and desorption experiments of cationic surfactant, nonionic surfactant and anionic surfactant were performed to investigate the effect of surfactants on hydraulic fracturing in coal bed methane (CBM) reservoir. The expansion height, contact angle, adsorption forms and absorbance, the surface tension and permeability of coal samples before and after damage, adsorption and desorption of different surfactants and compounded systems were compared and analyzed to identify the optimal system. The investigation shows that the surfactants and water have little effect on coal expansibility. The cationic surfactant increases the coal sample's hydrophobicity, the nonionic surfactant maintains the coal wettability, and the anionic surfactant increases the coal hydrophilia. The nonionic surfactant enlarges coal porosity and accelerates coal gas desorption. The GM is dot adsorption, OP is tile adsorption, and 1831 is conjoined structure adsorption. The GMOP-4 compounded system with low surface tension significantly decreases the GM adsorption volume and accelerates coal gas desorption. The GMOP-4 compounded system realizes the low-cost and high-performance application of cationic surfactants in CBM hydraulic fracturing.

参考文献

[1] 秦勇, 袁亮, 程远平. 中国煤层气产业战略效益影响因素分析[J]. 科技 导报, 2012, 30(34): 70-75. Qin Yong, Yuan Liang, Cheng Yuanping. Factors affecting the strategic benefits of CBM Industry in China[J]. Science & Technology Review,2012, 30(34): 70-75.
[2] 李明宅. 沁水盆地枣园井网煤层气采出程度[J]. 石油学报, 2005, 26 (1): 91-95. Li Mingzhai. Discussion on recovered percent of coal-bed methane in Zaoyuan well pattern of Qinshui Basin[J]. Acta Petrolei Sinica, 2005, 26 (1): 91-95.
[3] 刘升贵, 陈含, 彭智高, 等. 沁水盆地煤层气产能差异及采收率[J]. 辽 宁工程技术大学学报: 自然科学版, 2013, 32(6): 721-724. Liu Shenggui, Chen Han, Peng Zhigao, et al. Coalbed methane productivity differences and gas recovery in Qinshui Basin[J]. Journal of Liaoning Technical University: Natural Science, 2013, 32(6): 721- 724.
[4] 范俊佳, 琚宜文, 柳少波, 等. 不同煤储层条件下煤岩微孔结构及其对 煤层气开发的启示[J]. 煤炭学报, 2013, 38(3): 441-447. Fan Junjia, Ju Xuanwen, Liu Shaobo, et al. Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development[J]. Journal of China Coal Society, 2013, 38(3): 441-447.
[5] 朱维耀, 董熇, 宋洪庆, 等. 低渗透煤层气水两相非线性渗流数学模型 及计算分析[J]. 科技导报, 2013, 31(22): 36-39. Zhu Weiyao, Dong He, Song Hongqing, et al. A mathematical model for gas-water two-phase nonlinear flow in low permeability coal reservoirs and calculation analysis[J]. Science & Technology Review, 2013, 31 (22): 36-39.
[6] 蔡强, 牛丛丛, 刘曰武, 等. 煤层中双重孔隙介质渗流理论的应用[J]. 科技导报, 2012, 30(24): 17-22. Cai Qiang, Niu Congcong, Liu Yuewu, et al. Theory of dual-porosity media in coal bed methane and its application[J]. Science & Technology Review, 2012, 30(24): 17-22.
[7] 肖知国. 注水抑制瓦斯解吸效应实验研究与应用[D]. 焦作: 河南理工 大学, 2010. Xiao Zhiguo. Experimental Study and Application of Inhibitory Effect on Gas Desorption of Coal Seam Injected with water[D]. Jiaozuo: Henan Polytechnic University, 2010.
[8] 张虎权. 王延东, 卫平, 等. 煤层气成因研究[J]. 石油学报, 2007, 28 (2): 29-32. Zhang Huquan, Wang Yandong, Wei Ping, et al. Study on the origins of coal-bed gas[J]. Acta Petrolei Sinica, 2007, 28(2): 29-32.
[9] 聂百胜, 何学秋, 王恩元, 等. 煤吸附水的微观机理[J]. 中国矿业大学 学报, 2004, 33(4): 379-383. Nie Baisheng, He Xueqiu, Wang Enyuan, et al. Micro-mechanism of coal adsorbing water[J]. Journal of China University of Mining & Technology, 2004, 33(4): 379-383.
[10] 欧成华, 李士伦, 杜建芬, 等. 煤层气吸附机理研究的发展与展望[J]. 西南石油学院学报, 2003, 25(5): 34-38. Ou Chenghua, Li Shilun, Du Jianfen, et al. Development and prospect on adsorption mechanism of coalbed methane in coal seams[J]. Journal of Southwest Petroleum Institute, 2003, 25(5): 34-38.
[11] 孔祥文, 赵庆波, 孙粉锦, 等. 煤层气高产富集规律及开采特征研究 新进展[J]. 天然气地球科学, 2011, 22(4): 738-746. Kong Xiangwen, Zhao Qingbo, Sun Fenjin, et al. New advances of productive & enriching patterns and production characteristics of coalbed methane in China[J]. Natural Gas Geoscience, 2011, 22(4): 738-746.
[12] 赵庆波, 孔祥文, 赵奇. 煤层气成藏条件及开采特征[J]. 石油与天然 气地质, 2012, 33(4): 552-560. Zhao Qingbo, Kong Xiangwen, Zhao Qi. Coalbed methane accumulation conditions and production characteristics[J]. Oil & Gas Geology, 2012, 33(4): 552-560.
[13] 王怀勐, 朱炎铭, 李伍, 等.煤层气赋存的两大地质控制因素[J]. 煤炭 学报, 2011, 36(7): 1129-1131. Wang Huaimeng, Zhu Yanming, Li Wu, et al. Two major geological control factors of occurrence characteristics of CBM[J]. Journal of China Coal Society, 2011, 36(7): 1129-1131.
[14] 张杰, 林珊珊, 曲永林, 等. 煤层气气驱吸附及解吸规律实验研究[J]. 特种油气藏, 2012, 19(6): 122-125. Zhang Jie, Lin Shanshan, Qu Yonglin, et al. Experimental study on the regularity of absorption and desorption of coal seam gas[J]. Special Oil and Gas Reservoirs, 2012, 19(6): 122-125.
[15] 刘曰武, 苏中良, 方虹斌, 等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试, 2010, 19(6): 37-44. Liu Yuewu, Su Zhongliang, Fang Hongbin, et al. Review on CBM desorption/adsorption mechanism[J]. Well Testing, 2010, 19(6): 37-44.
[16] 秦文贵, 张延松. 煤孔隙分布与煤层注水增量的关系[J]. 煤炭学报, 2000, 25(5): 514-517. Qin Wengui, Zhang Yansong. Relation of pore distribution of coal with water infusion increment in seams[J]. Journal of China Coal Society, 2000, 25(5): 514-517.
[17] 陈霞, 刘洪林, 王红岩, 等. 沁水盆地含水煤层气藏的气体渗流特征[J]. 石油学报, 2011, 32(3): 500-503. Chen Xia, Liu Honglin, Wang Hongyan, et al, Gas- seepage characteristics of coalbed reservoirs with different water saturation in the Qinshui Basin[J]. Acta Petrolei Sinica, 2011, 32(3): 500-503.
[18] 孟巧荣, 赵阳升, 胡耀青, 等. 焦煤孔隙结构形态的实验研究[J]. 煤 炭学报, 2011, 36(3): 487-490. Meng Qiaorong, Zhao Yangsheng, Hu Yaoqing, et al. Experimental study on pore structure and pore shape of coking coal[J]. Journal of China Coal Society, 2011, 36(3): 487-490.
[19] 王惠宾, 汪远东, 卢平. 煤层注水添加润湿剂研究[J]. 煤炭学报, 1994, 19(2): 551-160. Wang Huibin, Wang Yuandong, Lu Ping. Research on wetting agent for water infusion of coal seams[J]. Journal of China Coal Society, 2011, 36(3): 487-490.
[20] 姜伟, 管保山, 杨致远, 等. 不同类型表面活性剂对煤岩润湿性能影 响研究[C]//2013年煤层气学术研讨会, 2013年9月22-24日, 杭州, 中国. Jiang Wei, Guan Baoshan, Yang Zhiyuan, et al. Study on the coal wettability performance affected by different surfactant[C]//2013 CBM Symposium, September 22-24, 2013, Hangzhou, China.
[21] 问晓勇, 伊向艺, 卢渊, 等. 不同压裂液对煤岩渗透率伤害实验评价 初探[J]. 石油化工应用, 2011, 30(3): 12-15. Wen Xiaoyong, Yi Xiangyi, Lu Yuan, et al. Wvaluation and primary exploration of damage experiment of coal rock permeability caused by different fracture fluid[J]. Petrochemical Industry Application, 2011, 30 (3): 12-15.
[22] 丛连铸, 吴庆红, 赵波. 煤层气储层压裂液添加剂的优选[J]. 油田化 学, 2004, 21(3): 220-223. Cong Lianzhu, Wu Qinghong, Zhao Bo. Screening and optimizing additives of water base hydrofracturing gelling fuids for coalbed methane reservoir[J]. Oilfield Chemistry, 2004, 21(3): 220-223.
[23] 刘萍, 管保山, 梁利, 等. 利用煤层气采出水配制表面活性剂压裂液 的研究与应用[C]//2013年煤层气学术研讨会, 2013年9月22-24日, 杭州, 中国. Liu Ping, Guan Baoshan, Liang Li, et al. Study and application of formation water from coalbed methane wells for preparing viscoelastic surfactand fracturing fluid[C]//2013 CBM Symposium, September 22- 24, 2013, Hangzhou, China.
[24] 崔思华, 管保山, 张遂安, 等. 煤岩储层伤害机理及评价方法[J]. 中国 煤层气, 2012, 9(3): 38-41. Cui Sihua, Guan Baoshan, Zhang Suian, et al. Mechanism of coal & rocks reservoirs and evaluation methods[J]. China Coalbed Mechane, 2012, 9(3): 38-41.
[25] 宋佳, 卢渊, 李永寿, 等. 煤岩压裂液动滤失实验研究[J]. 油气藏评价 与开发, 2011, 1(1/2): 74-77. Song Jia, Lu Yuan, Li Yongshou, et al. Experiment research on fracture fluid dynamic filtration of coal rocks[J]. Reservoir Evaluation and Development, 2011, 1(1/2): 74-77.
[26] 丛连铸, 汪永利, 梁利, 等. 水基压裂液对煤层储气层伤害的室内研究[J]. 油田化学, 2002, 19(4): 334-336. Cong Lianzhu, Wang Yongli, Liang Li, et al. A laboratory study on damage to gas-bearing coalbed by aqueous fracturing fluids[J]. Oilfield Chemistry, 2002, 19(4): 334-336.
[27] 胡广强. 大曲率段煤层坍塌机理及防塌钻井液技术研究[D]. 成都: 西南石油大学, 2011. Hu Guangqiang. The caving mechanism and anti- sloughing drilling fluid in large curvature CBM reservoir[D]. Chengdu: The Southwest Petroleum University, 2011.
[28] 管宝山, 郭丽梅, 梁利, 等. 煤层用黏弹性表面活性剂压裂液适应性 评价[C]. 2010年全国煤层气学术研讨会论文集. 北京: 石油工业出 版社, 2010. Guan Baoshan, Guo Li, Liang Li, et al . Adaptability evaluation of viscoelastic surfactant fracturing fluid in CBM reservoir[C]//2010 CBM Symposium. Beijing: Petroleum Industry Press, 2010.
文章导航

/